BECCA—A Brain Emulating Cognition and Control Architecture

Brandon Rohrer (B.S. ‘97)

Intelligent Systems Robotics and Cybernetics Group
Sandia National Laboratories
November 15, 2007
BECCA—A Brain Emulating Cognition and Control Architecture

Brandon Rohrer

BECCA

• BECCA is a biomimetic approach to achieving human-like reasoning, perception, learning, and movement control in machines

• Capabilities
 – Learning complex, unmodeled systems and patterns (data fusion)
 – Predicting future events based on prior experience
 – Identifying novel patterns and concepts
 – Generalizing knowledge and applying it to unfamiliar situations (symbolic reasoning)

• It has two core algorithms
 – S-Learning
 – Context-Based Similarity
Overview

S-Learning
Rotary Robot
Reaching
Grasping

Context-Based Similarity
Natural Language Processing
Perception

Applications

Brain-Emulating Cognition and Control Architecture

Agent -> Planner -> World

- New experiences
- Current condition
- Update
- Query
- Report
- Train
- Report of actions

Experience Classifier

Effects of actions

Operational Diagram
Working Assumptions

- Sensor and control information
 - are passed in “episodic” fashion, quantized in time,
 - are discretized in magnitude,
 - are treated as categories, i.e. extrapolation and interpolation does not occur explicitly.
- Allows very general application
S-Learning Algorithm

• **S-Learning (sequence learning)**
 - records observed sequences and uses them
 • to make control decisions and
 • predictions about future events

• **Algorithm outline**
 - 1. If a sequence ends in a goal, remember it.
 - 2. If a sequence correctly predicts a goal, strengthen it.
 - 3. If a sequence incorrectly predicts a goal, weaken it.
S-Learning: Rotary robot

- Simulation of a one degree-of-freedom rotary pointer robot,
 - Sensor quantized in 10° increments
 - Movement by 10° increments
- S-Learning demonstrated the ability to learn and predict hard nonlinearities
- S-Learning performed optimally even in the presence of
 - Scrambled sensor conditions
 - Gain reversals
 - Stochastic movement errors
 - Random time delays
- No explicit model of the system was provided—its workings were discovered by S-Learning
S-Learning: Reaching simulation

- Two degree-of-freedom robot reaching simulation
 - Approximately human parameters used for inertia, movement characteristics, and sensing capabilities
- Robot learned to reach a fixed target at an arbitrary position in the plane
- Demonstrated *generalization*
 - Learning in one task was applied to a second task
 - This, despite the complete separation of the sensory representations of the two tasks
- *No explicit model of the system was provided*—its workings were discovered by S-Learning
S-Learning: Grasping simulation

- Three degree-of-freedom robot grasping simulation with rich sensors:
 - Coarse vision
 - Coarse position
 - Contact pressure

- Robot learned to reach a fixed target at a given position in the plane
- Learned to coordinate grasp with motion to grab target

No explicit model of the system was provided — its workings were discovered by S-Learning
Context-Based Similarity (CBS)

Definitions:
- **\mathcal{E}** *Key event(s).* The subjects of the comparison. This can be one or more events.
- **ρ_e** *Key pattern.* Any pattern containing \mathcal{E}.
- **α** *Prefix.* The portion of ρ_e that precedes \mathcal{E}.
- **ω** *Postfix.* The portion of ρ_e that follows \mathcal{E}.
 - i.e.: $\rho_e = [\alpha \mathcal{E} \omega]$
- **$\lambda_{\mathcal{E}}$** *Key library.* The set of all ρ_e.
- **$\tau_{\mathcal{E}}$** *Term set.* The set of all \mathcal{E} occurring between a given α and ω.
- **$\sigma_{\mathcal{E}}$** *Synonym set.* The set of events similar to \mathcal{E}.

States that occur in a given context are related.
- The semantic content of a state or event is defined by its surroundings.
Context-Based Similarity (CBS)

- Underlying concept: Events are similar if they occur in identical contexts.
 - Context refers to the surrounding events that precede and follow a given event of interest.
- CBS finds the word “great” and the phrase “very large” to be similar because they are preceded and followed by the same word(s), i.e. they are in identical contexts.
CBS: Natural Language Processing

- After reading 25 million words, CBS performed synonym extraction (finding sets of words that occurred in contexts identical to a seed word)
- No part-of-speech tags were given
 - In fact, CBS did not do anything that was specific to English, text, or language in general. It would have handled position and force data the same way.
- Plausible synonym groups were created
- Illustrates bootstrapped association of categorically separate inputs

<table>
<thead>
<tr>
<th>seven</th>
<th>large</th>
<th>sugar</th>
<th>feet</th>
<th>father</th>
<th>road</th>
</tr>
</thead>
<tbody>
<tr>
<td>five</td>
<td>great</td>
<td>flour</td>
<td>face</td>
<td>mother</td>
<td>river</td>
</tr>
<tr>
<td>two</td>
<td>small</td>
<td>fruit</td>
<td>heart</td>
<td>wife</td>
<td>street</td>
</tr>
<tr>
<td>four</td>
<td>considerable</td>
<td>butter</td>
<td>head</td>
<td>son</td>
<td>table</td>
</tr>
<tr>
<td>three</td>
<td>certain</td>
<td>salt</td>
<td>side</td>
<td>head</td>
<td>head</td>
</tr>
<tr>
<td>ten</td>
<td>very large</td>
<td>water</td>
<td>house</td>
<td>life</td>
<td>fire</td>
</tr>
<tr>
<td>twelve</td>
<td>good</td>
<td>mace</td>
<td>lips</td>
<td>voice</td>
<td>hill</td>
</tr>
<tr>
<td>fifteen</td>
<td>very small</td>
<td>mear</td>
<td>work</td>
<td>face</td>
<td>head</td>
</tr>
<tr>
<td>twenty</td>
<td>vast</td>
<td>cream</td>
<td>hands</td>
<td>heart</td>
<td>house</td>
</tr>
<tr>
<td>fifty</td>
<td>larger</td>
<td>brandy</td>
<td>back</td>
<td>name</td>
<td>room</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lake</td>
</tr>
</tbody>
</table>
BECCA

Overview
S-Learning
 Rotary Robot
 Reaching
 Grasping
Context-Based Similarity
 Natural Language Processing
 Perception
Applications

CBS: Concept formation

- Formulating the concept of the object <vehicle> by compiling specific examples
- Repeated sequences of 1) a static video background, 2) a dynamic video component created by a moving vehicle, 3) detected motion, and 4) detected sound allow the “synonym group” or concept of <vehicle> to be formed.
Formulating the higher-level concept <barrier> using previously developed concepts
Repeated sequences of 1) a proximity detection event, 2) a instance of one of several previously discovered concepts, 3) forward motion, and 4) collision detection allow the meta-concept of <barrier> to be formed.
BECCA

Overview
S-Learning
Rotary Robot
 Reaching
 Grasping
Context-Based Similarity
 Natural Language Processing
 Perception
Applications

Humanoid robot control

- Physically interact with humans
- Learn to manipulate unfamiliar objects
- Acquire spoken language
- Learn complex perceptuo-motor tasks
- Create high-level abstractions
- Make predictions about future events
- Use reasoning to achieve goals
- Solve poorly-posed problems
- Generalize experience to novel situations
Multi-vehicle cooperative control

- Learn from experience
 - Individual vehicles
 - The cooperative as a whole
- Make predictions about unfamiliar environments
- Create conceptual symbols
- Find cross-domain patterns
- Use symbolic reasoning to interpret complex data
- Explore hypothetical situations

Overview
S-Learning
 Rotary Robot
 Reaching
 Grasping
Context-Based Similarity
 Natural Language Processing
 Perception
Applications
BECCA

Overview
S-Learning
 Rotary Robot
 Reaching
 Grasping

Context-Based Similarity
 Natural Language Processing
 Perception

Applications

Multi-media data mining

- Make predictions
- Create conceptual symbols
- Identify arbitrary patterns in large multi-modal data sets
- Use symbolic reasoning to interpret complex data
- Explore hypothetical situations
- Identify unusual or “red flag” situations