Using structured representations in nonparametric Bayesian models

Tom Griffiths
Psychology and Cognitive Science
University of California, Berkeley

Joint work with Dave Blei, Zoubin Ghahramani,
Mike Jordan, Dan Navarro and Frank Wood
Identifying latent structure

How much latent structure is expressed in our data?
Example 1: Clustering users

• Can we cluster users based on the webpages they visit?

• Want to infer a partition of the users

• How many clusters do we need?
Example 2: Organizing documents

• Can we decide how to organize a collection of documents?

 TITLE: Modeling spatial and temporal aspects of visual backward masking.

 AUTHORS: Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo

 ABSTRACT: Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain...

• Want to infer a hierarchy of topics

• What is the structure of the hierarchy?
Example 3: Identifying objects

• Can we learn to code images based on their contents?

• Want to infer a binary matrix encoding image features (one row per image, one column per object)

• How many objects appear in a collection of images?
Perspectives on model selection

• Compare multiple models of different dimensionality
 – Bayes factors, cross-validation, etc.
 – hard to apply to large model spaces
 – commits to intrinsically finite representation

• Define a single model of unbounded dimensionality
 – posterior on dimensionality via posterior on parameters
 – allows dimensionality to grow with new data
 – pursued in nonparametric Bayesian density estimation
 (Antoniak, 1974; Escobar & West, 1995; Ferguson, 1973)
Outline

• Nonparametric Bayes and the Chinese restaurant process
 – distribution on partitions

• Hierarchies and the nested Chinese restaurant process
 – distribution on trees

• Latent features and the Indian buffet process
 – distribution on binary matrices
Mixture models

\[P(x_i) = \sum_{k=1}^{K} P(x_i | z_i = k) P(z_i = k) \]
Mixture models

• Associate each datapoint x_i with a latent class z_i

$$P(x_i) = \sum_{k=1}^{K} P(x_i|z_i = k)P(z_i = k)$$

• e.g., Multinomial mixture model:

$$z_i \sim \text{Multinomial}(\theta, 1)$$

$$x_i|z_i, \beta \sim \text{Multinomial}(\beta_{z_i}, n_i)$$

$$\theta \sim \text{Dirichlet}(\alpha)$$

$$\beta_k \sim \text{Dirichlet}(\gamma)$$
Mixture models

• Associate each datapoint x_i with a latent class z_i

\[P(x_i) = \sum_{k=1}^{K} P(x_i | z_i = k) P(z_i = k) \]

• e.g., Multinomial mixture model:

\[z_i \sim \text{Multinomial}(\theta, 1) \]
\[x_i | z_i, \beta \sim \text{Multinomial}(\beta_{zi}, n_i) \]
\[\theta \sim \text{Dirichlet}(\alpha) \]
\[\beta_k \sim \text{Dirichlet}(\gamma) \]

• How do we choose K?
Chinese restaurant process (CRP)

- Chinese restaurant with infinitely many infinite tables
- \(N \) customers sit down
 - the first customer sits at the first table
 - the \(i \)th customer chooses a table at random

\[
P(\text{occupied table } k|\text{previous customers}) = \frac{m_k}{\alpha + i - 1}
\]

\[
P(\text{next unoccupied table}|\text{previous customers}) = \frac{\alpha}{\alpha + i - 1}
\]
Chinese restaurant process (CRP)

- Defines a distribution over partitions (the same distribution as the Dirichlet process; Blackwell & McQueen, 1973)
- e.g., \((1 \ 3 \ 4 \ 8) \ (2 \ 5 \ 10) \ (6) \ (7 \ 9)\)
- Exchangeable distribution (Aldous, 1985; Pitman, 1996)

\[
P(\text{partition}) = \alpha^{K_+} \left(\prod_{k=1}^{K_+} (m_k - 1)! \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}
\]
CRP and mixture modeling

- Each table k
 - corresponds to a mixture component
 - associated with a parameter β_k drawn from a prior
- e.g., Multinomial CRP mixture model:

 $$z \sim \text{CRP}(\alpha)$$
 $$x_i | z_i, \beta \sim \text{Multinomial}(\beta_{z_i}, n_i)$$
 $$\beta_k \sim \text{Dirichlet}(\gamma)$$
CRP and mixture modeling

- Given data x, posterior on z gives
 - # of classes (# of occupied tables)
 - which data are assigned to each class
 - parameter for each class, $P(\beta_k | \text{data assigned to table } k)$

- Posterior inference via Gibbs sampling
 (e.g., Escobar & West, 1995; Neal, 1998)
Gibbs sampling

• Sequentially sample class assignments

\[P(z_i | x, z_{-i}) \propto P(x_i | x_{-i}, z) P(z_i | z_{-i}) \]

• CRP provides \(P(z_i | z_{-i}) \)

\[P(z_i = \text{occupied class } k | z_{-i}) = \frac{m_{k,-i}}{\alpha + N - 1} \]

\[P(z_i = \text{new class} | z_{-i}) = \frac{\alpha}{\alpha + N - 1} \]

• Allows datapoints to come from new classes

• Also split-merge algorithms (Jain & Neal, 2000; Dahl, 2003)
Example 1: Clustering users

- Can we cluster users based on the webpages they visit?

- Want to infer a partition of the users

- How many clusters do we need?
Modeling web data

• 1000 people browsing MSNBC.com and MSN.com on September 28, 1999 (from Cadez et al., 2003)

• Webpages classified into 17 categories, producing a vector of counts for each person’s browsing behavior

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Technology</td>
<td>9. Health</td>
<td>15. Travel</td>
</tr>
<tr>
<td>4. Local</td>
<td>10. Living</td>
<td>16. MSN-News</td>
</tr>
</tbody>
</table>
Modeling web data

- Applying the multinomial CRP mixture results in a distribution over the number of clusters...

- ...and the multinomials for each cluster
Beyond the CRP

• The CRP allows number of classes to be inferred

• But...
 – testing multiple models still feasible for mixtures
 – many kinds of data require other representations

• Can we define priors for structured representations?
 – trees (Blei, Griffiths, Jordan, & Tenenbaum, 2004)
 – binary matrices (Griffiths & Ghahramani, 2005)
Outline

• Nonparametric Bayes and the Chinese restaurant process
 – distribution on partitions

• Hierarchies and the nested Chinese restaurant process
 – distribution on trees

• Latent features and the Indian buffet process
 – distribution on binary matrices
• One representation of trees is as nested partitions
• One representation of trees is as nested partitions

• Suggests method for defining prior on trees: the *nested* Chinese restaurant process
Nested Chinese restaurant process

- Infinite number of Chinese restaurants in a city:
 - one restaurant is the root. On each of its infinite tables is a card with the name of another restaurant
 - on each of the tables in those restaurants are cards that refer to other restaurants, and this structure repeats

- Restaurants are organized into an infinitely branching tree
A tourist arrives in the city for a culinary vacation
- on the first evening, he enters the root restaurant and chooses a table, taking the card on that table
- on the second evening, he goes to the restaurant identified on the card and chooses another table
- he repeats this process for L days
A tourist arrives in the city for a culinary vacation

 on the first evening, he enters the root restaurant and chooses a table, taking the card on that table

 on the second evening, he goes to the restaurant identified on the card and chooses another table

 he repeats this process for L days
A tourist arrives in the city for a culinary vacation

- on the first evening, he enters the root restaurant and chooses a table, taking the card on that table
- on the second evening, he goes to the restaurant identified on the card and chooses another table
- he repeats this process for L days
Nested Chinese restaurant process

- The L chosen restaurants constitute a path from the root to a restaurant at the Lth level of the infinite tree.
- After N tourists take L-day vacations, the collection of paths describe a particular L-level subtree of the infinite tree.
- Can be used to define a statistical model in which each object is represented as a path through the tree.
• The L chosen restaurants constitute a path from the root to a restaurant at the Lth level of the infinite tree

• After N tourists take L-day vacations, the collection of paths describe a particular L-level subtree of the infinite tree

• Can be used to define a statistical model in which each object is represented as a path through the tree
• The L chosen restaurants constitute a path from the root to a restaurant at the Lth level of the infinite tree

• After N tourists take L-day vacations, the collection of paths describe a particular L-level subtree of the infinite tree

• Can be used to define a statistical model in which each object is represented as a path through the tree
Example 2: Organizing documents

- Can we decide how to organize a collection of documents?

 TITLE: Modeling spatial and temporal aspects of visual backward masking.
 AUTHORS: Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo
 ABSTRACT: Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain...

- Want to infer a hierarchy of topics

- What is the structure of the hierarchy?
Latent Dirichlet Allocation (LDA)

- Model for text collections (Blei, Ng, & Jordan, 2003)
- Each document is a mixture of topics

\[
P(w_i) = \sum_{k=1}^{K} P(w_i|z_i = k)P(z_i = k)
\]

- Mixture weights (\(\theta\)) vary across documents

\[
\theta \sim \text{Dirichlet}(\alpha) \\
z_i|\theta \sim \text{Multinomial}(\theta, 1) \\
w_i|z_i \sim \text{Multinomial}(\beta_{z_i}, 1) \\
\beta_k \sim \text{Dirichlet}(\eta)
\]
(words in each column are from one topic, sorted by β_k)
Hierarchical LDA

- Choose a path p through the infinite tree of restaurants
- Choose a distribution θ over levels
- For each word w_i
 - choose a level from $\text{Multinomial}(\theta, 1)$
 - draw the word from the topic in the restaurant at that level
Hierarchical LDA

- Given a document collection, posterior is a distribution on
 - the structure of the hierarchy
 - assignment of documents to paths, words to levels
 - topics which populate the hierarchy

- Posterior inference via Gibbs sampling (on paths and z)

- Allows new documents to fill unoccupied parts of the tree
Prior and posterior samples
Psychological Review hierarchy

A
MODEL
MEMORY
FOR
MODELS
TASK
INFORMATION
RESULTS
ACCOUNT
PERFORMANCE

SELF
SOCIAL
PSYCHOLOGY
RESEARCH
RISK
STRATEGIES
INTERPERSONAL
PERSONALITY
SAMPLING
INDIVIDUALS

MOTION
VISUAL
SURFACE
BINOCULAR
RIVALRY
CONTOUR
DIRECTION
CONTOURS
SURFACES
ILLUSORY

DRUG
FOOD
BRAIN
AROUSAL
ACTIVATION
AFFECTIVE
HUNGER
EXTINCTION
PAIN
CONDITIONED

RESPONSE
STIMULUS
REINFORCEMENT
RECOGNITION
STIMULI
RECALL
CHOICE
CONDITIONING
SIGNAL
DISCRIMINATION

SPEECH
READING
WORDS
MOVEMENT
MOTOR
VISUAL
WORD
SEMANTIC
PRODUCTION
LEXICAL

ACTION
SOCIAL
SELF
EXPERIENCE
EMOTION
GOALS
EMOTIONAL
THINKING
PERSON
MOTIVATION

GROUP
IQ
INTELLIGENCE
SOCIAL
RATIONAL
INDIVIDUAL
GROUPS
MEMBERS
IMPRESSIONS
RESOURCE

SEX
EMOTIONS
GENDER
EMOTION
STRESS
WOMEN
HEALTH
HANDEDNESS
DEPRESSION
SEXUAL

REASONING
ATTITUDE
CONSISTENCY
SITUATIONAL
INFERENCE
JUDGMENT
PROBABILITIES
STATISTICAL
PERSONALITY
BIASES

IMAGE
COLOR
MONOCULAR
LIGHTNESS
GIBSON
SUBMOVEMENT
ORIENTATION
HOLOGRAPHIC
GOODNESS
EYES

CONDITIONING
STRESS
EMOTIONAL
BEHAVIORAL
FEAR
STIMULATION
TOLERANCE
RESPONSES
REINFORCEMENT
LESIONS
Outline

• Nonparametric Bayes and the Chinese restaurant process
 – distribution on partitions

• Hierarchies and the nested Chinese restaurant process
 – distribution on trees

• Latent features and the Indian buffet process
 – distribution on binary matrices
Latent feature representations

• Many statistical models represent objects with latent features
 – binary features
 – factorial structures
 – continuous dimensions
Latent feature representations

• Many statistical models represent objects with latent features
 – binary features
 – factorial structures
 – continuous dimensions

• A common assumption: sparsity
Latent feature representations

- Many statistical models represent objects with latent features
 - binary features
 - factorial structures
 - continuous dimensions

- A common assumption: sparsity

- Define a prior for sparse latent feature representations by defining a prior on (infinite column) binary matrices
Different feature representations

- Binary features
Different feature representations

- Binary features
- Factorial features

<table>
<thead>
<tr>
<th>N objects</th>
<th>K features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 0 0 4</td>
</tr>
<tr>
<td>5</td>
<td>0 3 0</td>
</tr>
<tr>
<td>0</td>
<td>1 4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Different feature representations

<table>
<thead>
<tr>
<th>N objects</th>
<th>K features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9 1.4 0 0 −0.3</td>
</tr>
<tr>
<td>−3.2 0 0.9 0</td>
<td></td>
</tr>
<tr>
<td>0 0.2 −2.8</td>
<td></td>
</tr>
<tr>
<td>1.8 0</td>
<td></td>
</tr>
<tr>
<td>−0.1</td>
<td></td>
</tr>
</tbody>
</table>

- Binary features
- Factorial features
- Continuous features
Priors on binary matrices

• Start with priors on $N \times K$ matrices, take $K \to \infty$

• Two cases:
 – “class matrices”: one 1 per row
 – “feature matrices”: general binary matrices

• Two priors:
 – the Chinese restaurant process
 – the Indian buffet process
Class matrices

\[z_i|\theta \sim \text{Multinomial}(\theta, 1) \]
\[\theta \sim \text{Dirichlet}(\alpha/K) \]
Class matrices

\[P(Z) = \int_{\Delta} \prod_{i=1}^{N} P(z_i|\theta) P(\theta) \, d\theta \]
Left-ordered form

- History h of each class: binary column vector
- lof orders columns by values of binary histories
\textit{lof} equivalence classes

- X and Y are \textit{lof} equivalent iff $\text{lof}(X) = \text{lof}(Y)$

- Class matrices: \textit{lof} equivalence classes are partitions
lof equivalence classes

\[
\lim_{K \to \infty} P([Z]) = \alpha^{K_+} \left(\prod_{k=1}^{K_+} (m_k - 1)! \right) \frac{\Gamma(\alpha)}{\Gamma(N + \alpha)}
\]

(see also Green & Richardson, 2001; Neal, 1992)
Feature matrices

- For general binary matrices

\[z_{ik} \sim \text{Bernoulli}(\theta_k) \]
\[\theta_k \sim \text{Beta}(\alpha/K, 1) \]
Feature matrices

- For general binary matrices

 \[
 z_{ik} \sim \text{Bernoulli}(\theta_k)
 \]
 \[
 \theta_k \sim \text{Beta}(\alpha/K, 1)
 \]

- For a finite matrix \(Z\)

\[
P(Z) = \int_0^1 \cdots \int_0^1 P(Z|\theta_1, \ldots, \theta_K) \prod_{k=1}^K P(\theta_k) \ d\theta_k
\]
Feature matrices

• For general binary matrices

\[z_{ik} \sim \text{Bernoulli}(\theta_k) \]
\[\theta_k \sim \text{Beta}(\alpha/K, 1) \]

• For a finite matrix \(Z \)

\[
P(Z) = \int_0^1 \cdots \int_0^1 P(Z|\theta_1, \ldots, \theta_k) \prod_{k=1}^K P(\theta_k) \, d\theta_k
\]

• Taking the limit as \(K \to \infty \) …

\[
P([Z]) = \exp\left\{ -\alpha \sum_{i=1}^N \frac{1}{i} \right\} \frac{\alpha^{K^+}}{\prod_{h>0} K_h!} \prod_{k\leq K^+} \frac{(N-m_k)!(m_k-1)!}{N!}
\]
Indian buffet process (IBP)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
 - the first customer samples $\text{Poisson}(\alpha)$ dishes
 - the ith customer
 samples a previously sampled dish with probability $\frac{m_k}{i+1}$
 then samples $\text{Poisson}(\frac{\alpha}{i})$ new dishes
Indian buffet process (IBP)

- Indian restaurant with infinitely many infinite dishes
- \(N \) customers serve themselves
 - the first customer samples \(\text{Poisson}(\alpha) \) dishes
 - the \(i \)th customer
 samples a previously sampled dish with probability \(\frac{m_k}{i+1} \)
 then samples \(\text{Poisson}\left(\frac{\alpha}{i}\right) \) new dishes
Indian buffet process (IBP)

- Indian restaurant with infinitely many infinite dishes
- \(N \) customers serve themselves
 - the first customer samples \(\text{Poisson}(\alpha) \) dishes
 - the \(i \)th customer
 - samples a previously sampled dish with probability \(\frac{m_k}{i+1} \)
 - then samples \(\text{Poisson}(\frac{\alpha}{i}) \) new dishes
Indian buffet process (IBP)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
 - the first customer samples $\text{Poisson}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$ then samples $\text{Poisson}(\frac{\alpha}{i})$ new dishes
Indian buffet process (IBP)

- Indian restaurant with infinitely many infinite dishes
- N customers serve themselves
 - the first customer samples $\text{Poisson}(\alpha)$ dishes
 - the ith customer samples a previously sampled dish with probability $\frac{m_k}{i+1}$ then samples $\text{Poisson}\left(\frac{\alpha}{i}\right)$ new dishes
Properties of the IBP

• Exchangeability of rows (or columns)

• Number of dishes sampled by each customer $\sim \text{Poisson}(\alpha)$

• Expected number of non-zero entries in Z is $N\alpha$

• Total number of dishes $K^+ \sim \text{Poisson}(\alpha \sum_{i=1}^{N} \frac{1}{i})$
Example 3: Identifying objects

- Can we learn to code images based on their contents?

- Want to infer a binary matrix encoding image features (one row per image, one column per object)

- How many objects appear in a collection of images?

(Griffiths & Ghahramani, 2006)
A linear-Gaussian model

• Likelihood $P(X|Z)$ specified by

 $x_i \sim \text{Gaussian}(z_i A, \sigma_X I)$

 $A \sim \text{Gaussian}(0, \sigma_A I)$

• For $Z \sim \text{CRP}(\alpha)$, spherical Gaussian mixture model

• For $Z \sim \text{IBP}(\alpha)$, binary latent factor model

• Compute posterior distribution $P(Z|X)$
Gibbs sampling

- Sequentially sample feature assignments

\[P(z_{ik} | X, z_{(-i)k}) \propto P(x_i | X_{-i}, Z) P(z_{ik} | z_{(-i)k}) \]

- IBP provides \(P(z_{ik} | z_{(-i)k}) \)
 - for old features, \(P(z_{ik} | z_{(-i)k}) = \frac{m_{k,-i}}{N} \)
 - prior on new features is Poisson\((\frac{\alpha}{N}) \)

- Allows datapoints to have new features

- More sophisticated sampling schemes are possible
Coding for the presence of objects

- Photographs of everyday objects taken with a webcam
- 100 images, each 320×240 pixels
- Each image contained from 1 to 4 (fixed position) objects
Coding for the presence of objects

(Positive) (Negative) (Negative) (Negative)

0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1

K_+

0 200 400 600 800 1000

0 5 10
Extensions

- Two-parameter process
 (Ghahramani, Griffiths, & Sollich, 2006)

- Particle filter
 (Wood & Griffiths, 2006)

- Connections to beta processes
 (Thibaux & Jordan, 2006)
Conclusion

• Strategy for model selection from nonparametric Bayes: prior over combinatorial structures of variable dimension

• For mixture models, use the Chinese restaurant process
 – exchangeable distribution over partitions

• Same strategy can be extended to other representations
 – trees: nested Chinese restaurant process
 – binary matrices: Indian buffet process

• Provides a way to provide the flexibility of nonparametric Bayes with the richness of structured representations
Another generating process

• *lof*-equivalence classes can be represented as vectors of history counts

\[h : (1 \ 2 \ \cdots \ 2^N - 1) \]

\[K_h : (K_1 \ K_2 \ \cdots \ K_{2^N - 1}) \]

• Generate binary matrices by sampling \(K_h \) directly

\[K_h \sim \text{Poisson}(\alpha B(m_h, N - m_h + 1)) \]

where \(B(r, s) \) is the beta function
Example 4: Learning hidden causes

- Can we infer the hidden causes responsible for producing observed data?

- Want to infer adjacency matrix of a bipartite graph (one row per observed variable, one column per latent)

- How many hidden causes are responsible?

(Wood, Griffiths, & Ghahramani, 2006)
Priors on bipartite graphs

• $K \times N$ binary matrix \Rightarrow bipartite graph
Priors on bipartite graphs

- $K \times N$ binary matrix \Rightarrow bipartite graph
- Chinese restaurant process: one disease per symptom
Priors on bipartite graphs

- $K \times N$ binary matrix \Rightarrow bipartite graph

- Chinese restaurant process: one disease per symptom

- Indian buffet process: multiple diseases per symptom
Binary matrix factorization

- With binary data and binary causes...

- Define likelihood $P(X|Z, Y)$ using “noisy-OR”

$$P(x_{ij} = 1|Y, Z) = 1 - (1 - \epsilon)(1 - \lambda) \sum_k z_{ik} y_{kj}$$
Results: Simulated data

- Runtime (Sec.)
- In Degree Error
- Structure Error

Comparing Gibbs and RJMCMC approaches.
Results: Stroke data

- Using data from the Mount Sinai Stroke Database...
 - presence of 38 “stroke signs” recorded for 50 patients
- Results roughly in accordance with recognized syndromes
Results: Stroke data
Example 5: Additive clustering

• What features do people associate with different stimuli?

• Additive clustering: infer features from human similarity judgments, assuming that $s_{ij} \approx \sum_k w_k f_{ik} f_{jk}$ for ($i \neq j$)

• Want to infer a binary matrix identifying features (one row per stimulus, one column per feature)

• How many features should we consider?

(Navarro & Griffiths, 2005)
Evaluating inferred feature structures

• Use Gibbs sampling to draw from posterior distribution on feature matrices and weights $P(F, w|S)$

• A feature is defined by the stimuli to which it belongs
 – compute posterior probability feature exists
 – compute expected weight, given existence

• Compare with previously published solutions where available
Results: Numbers

• Similarity data from Shepard et al. (1975)

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 8</td>
<td>0.444</td>
</tr>
<tr>
<td>0 1 2</td>
<td>0.345</td>
</tr>
<tr>
<td>3 6 9</td>
<td>0.331</td>
</tr>
<tr>
<td>6 7 8 9</td>
<td>0.291</td>
</tr>
<tr>
<td>2 3 4 5 6</td>
<td>0.255</td>
</tr>
<tr>
<td>1 3 5 7 9</td>
<td>0.216</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>0.214</td>
</tr>
<tr>
<td>4 5 6 7 8</td>
<td>0.172</td>
</tr>
<tr>
<td>additive constant</td>
<td>0.148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>PROB.</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 6 9</td>
<td>0.79</td>
<td>0.326</td>
</tr>
<tr>
<td>2 4 8</td>
<td>0.70</td>
<td>0.385</td>
</tr>
<tr>
<td>0 1 2</td>
<td>0.69</td>
<td>0.266</td>
</tr>
<tr>
<td>2 3 4 5 6</td>
<td>0.59</td>
<td>0.240</td>
</tr>
<tr>
<td>6 7 8 9</td>
<td>0.57</td>
<td>0.262</td>
</tr>
<tr>
<td>0 1 2 3 4</td>
<td>0.42</td>
<td>0.173</td>
</tr>
<tr>
<td>2 4 6 8</td>
<td>0.41</td>
<td>0.387</td>
</tr>
<tr>
<td>1 3 5 7 9</td>
<td>0.40</td>
<td>0.223</td>
</tr>
<tr>
<td>4 5 6 7 8</td>
<td>0.34</td>
<td>0.181</td>
</tr>
<tr>
<td>7 8 9</td>
<td>0.26</td>
<td>0.293</td>
</tr>
<tr>
<td>additive constant</td>
<td>1.00</td>
<td>0.075</td>
</tr>
</tbody>
</table>

• Model fits: (a) Tenenbaum (1996) \(r^2 = 0.909 \)
 (b) Navarro & Griffiths (2005) \(r^2 = 0.974 \)
Results: Countries

- Similarity data from Navarro & Lee (2002)

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>Italy</th>
<th>Vietnam</th>
<th>Germany</th>
<th>Zimbabwe</th>
<th>Zimbabwe</th>
<th>Iraq</th>
<th>Zimbabwe</th>
<th>Philippines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spain</td>
<td>China</td>
<td>Russia</td>
<td>Nigeria</td>
<td>Nigeria</td>
<td>Libya</td>
<td>Nigeria</td>
<td>Iraq</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Japan</td>
<td>USA</td>
<td>Cuba</td>
<td>Jamaica</td>
<td>Libya</td>
<td>Iraq</td>
<td>Libya</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROB.</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.62</td>
<td>0.52</td>
<td>0.36</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>0.593</td>
<td>0.421</td>
<td>0.267</td>
<td>0.467</td>
<td>0.209</td>
<td>0.373</td>
<td>0.299</td>
<td>0.311</td>
</tr>
</tbody>
</table>

- Model fits: Navarro & Griffiths (2005) \(r^2 = 0.854 \)
Results: Letters

• Similarity data from Rothkopf (1957)

FEATURE	M	I	C	D	P	E	E	K	B	C	N	L	G	O	R	F	H	X	G	J	W	T	Q	R	U
PROB.	1.00	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.98	0.92	0.686	0.341	0.623	0.321	0.465	0.653	0.322	0.427	0.226	0.225					
WEIGHT	0.686	0.341	0.623	0.321	0.465	0.653	0.322	0.427	0.226	0.225															

• Model fits: Navarro & Griffiths (2005) \((r^2 = 0.892) \)
The two-parameter IBP

• Use Beta\((\alpha\beta/K, \beta) \) instead of Beta\((\alpha/K, 1) \) in limiting construction
 – the first customer samples Poisson\((\alpha) \) dishes
 – the \(i \)th customer
 samples a previously sampled dish with probability \(\frac{m_k}{i+\beta} \)
 then samples Poisson\((\frac{\alpha\beta}{i+\beta}) \) new dishes

• Decouples density of matrix from its dimension
 – number of dishes sampled by each customer
 \(\sim \) Poisson\((\alpha) \)
 – expected number of non-zero entries in \(Z \) is \(N\alpha \)
 – total number of dishes \(K^+ \sim \) Poisson\((\alpha \sum_{i=1}^{N} \frac{\beta}{\beta+i-1}) \)
Particle filtering

• For the CRP, let \(z_{1:n} = (z_1, \ldots, z_n) \), etc.

\[
P(z_{1:n} | x_{1:n}) \propto P(x_n | z_{1:n}, x_{1:n-1}) P(z_n | z_{1:n-1}) P(z_{1:n-1} | x_{1:n-1})
\]

• Given a particle approximation to \(P(z_{1:n-1} | x_{1:n-1}) \)
 – generate tables for the \(n \)th customer via the CRP
 – assign weights to particles using \(P(x_n | z_{1:n}, x_{1:n-1}) \)

• For the IBP, let \(Z_{1:n} \) be first \(n \) rows of \(Z \), etc.

\[
P(Z_{1:n} | X_{1:n}) \propto P(x_n | Z_{1:n}, X_{1:n-1}) P(z_n | Z_{1:n-1}) P(Z_{1:n-1} | X_{1:n-1})
\]

• Given a particle approximation to \(P(Z_{1:n-1} | X_{1:n-1}) \)
 – generate dishes for the \(n \)th customer via the IBP
 – assign weights to particles using \(P(x_n | Z_{1:n}, X_{1:n-1}) \)