
Machine Learning in
Multi-Agent Planning

Geoff Gordon

ggordon@cs.cmu.edu

Machine Learning inMulti-Agent Planning – p.1/59

ML problems in multi-agent planning

Structured prediction problems

Interference from other agents

Help from other agents

Machine Learning inMulti-Agent Planning – p.2/59

Outline

Interference from other agents
• No-regret algorithms

Help from other agents
• Auction algorithms

Examples and experiments

Machine Learning inMulti-Agent Planning – p.3/59

Poker

Machine Learning inMulti-Agent Planning – p.4/59

Poker as a machine learning problem

Prediction problem:
• From: background knowledge, observations

of players
• Predict: how should I play in next hand

How should I play:
• From: history of observations and actions in

current hand
• Predict: should I bet on this round?

Machine Learning inMulti-Agent Planning – p.5/59

Why is poker hard?

Big output space

Don’t get information about “what ifs”

Structured output space

Neither adversarial nor cooperative

Machine Learning inMulti-Agent Planning – p.6/59

Why is poker hard?

Big output space

Don’t get information about “what ifs”

Structured output space

Neither adversarial nor cooperative

Machine Learning inMulti-Agent Planning – p.7/59

Output space

Behavior strategy: information state 7→ P (action)

[0, 1]# info states

9 K pass pass bet call 8 7 K 7→ P(bet) = .72

Machine Learning inMulti-Agent Planning – p.8/59

Structured prediction problem

• X : input space
• Y: prediction space
• H: hypothesis space

• `t: loss functions ((y − 5)2, DKL(y | (.2, .3, .5)))

Will assume H is convex, ⊂ R
d×n

May have many vertices, many faces, or other
complex features, but we have an efficient
description

Machine Learning inMulti-Agent Planning – p.9/59

Poker as structured prediction

• X : has Bill been drinking
• Y: dist’n over behavior strategies
• H : X 7→ Y
• `t: money I lose in hand t

Machine Learning inMulti-Agent Planning – p.10/59

Path planning w/ unknown costs

Machine Learning inMulti-Agent Planning – p.11/59

Path planning as structured prediction

X =

day of week
phase of moon
recent eclipse

Y = paths in map

H = X 7→ Y
`(y) = (c + C) · y

x

1

2 1

3

z

y

g

Machine Learning inMulti-Agent Planning – p.12/59

Adversarial path planning

Machine Learning inMulti-Agent Planning – p.13/59

Lookahead in multiagent planning

Machine Learning inMulti-Agent Planning – p.14/59

Lookahead, cont’d

X = features of current history

Y = behavior strategies

H = X 7→ Y
`(y) = E(heuristic(leaf)) (note: what ifs)

Machine Learning inMulti-Agent Planning – p.15/59

One-card poker

One-card poker file:///home/ggordon/Projects/Equilibrium/poker/index.html

1 of 3 11/10/2003 06:41 PM

One-card poker
Welcome to my poker page! Here you can play one-card poker against the computer. Of course, the
bets are not for real money.

Bet $0 Bet $1 Deal

Reset

You have won $0 so far.
You and the computer each ante $1.
Your card is A. What do you bet?

Here are the rules of the game: you and the computer each get one card and ante $1. You bet first,
either $0 or $1. Then the computer gets a chance to match you (if you bet $1) or raise you (if you bet
$0). If you bet $0 and the computer raised you, you get a chance to call. Betting $0 when your
opponent has already bet $1 means you fold and lose your ante. If no one folds before the end of
betting, the higher card wins the pot; that results in a net gain of either $1 or $2, equal to the other
player’s ante plus the bet of $0 or $1.

One-card poker is a simple game; nonetheless it has many of the elements of more complicated
games, including incomplete information, chance events, and multiple stages. And, optimal play
requires behaviors like randomization and bluffing. Even this simple game is difficult to solve
optimally: the first efficient solution that I know of is presented in [Koller and Pfeffer, 1995]. That
paper applies the sequence representation of extensive form games to one-card poker. Before the
invention of the sequence form, the standard algorithm was to convert the game to its normal form,
which is exponentially large in the size of the deck.

For this page, we are using a single-suit (13-card) deck. With this deck size, the normal form has
2^26 (about 67 million) pure strategies per player. By contrast, the sequence form has only 26
information states and 52 sequences per player. Real-world poker variants are much larger, with
many more information states than could possibly fit in memory. Even so, modern techniques (which
include tricks like grouping together sets of similar hands and ignoring some of the coupling between
very early and very late rounds of betting) can now find approximately-optimal solutions for games
like two-player Texas hold-em.

If you play optimally, you should be able to keep your losses down to about 6.4 cents per deal on
average. To limit your performance to this level, the computerized second player plays according to
the betting tables below. By contrast, if the computer decided whether to bet by flipping a coin
without looking at its card, you could win up to 50 cents per deal on average. These tables were
computed in Matlab by solving a small linear program generated from the sequence form of the game
tree. (Get the source.) The tables are not unique; the answer we compute depends on the details of
the linear programming solver we use.

Here is the betting table for player 2. To use it, look up player 2’s card in the column headers. Then
choose a row according to whether player 1 bet or passed. The corresponding entry says how often to
bet: for example, 0.632 means bet 63.2% of the time.

Machine Learning inMulti-Agent Planning – p.16/59

Rock-paper-scissors

R P S

R 0 1 -1

P -1 0 1

S 1 -1 0

Machine Learning inMulti-Agent Planning – p.17/59

Rock-paper-scissors

Machine Learning inMulti-Agent Planning – p.18/59

Neither statistical nor adversarial

Possible approaches:
• Learn model of environment (incl. other

agents)
• Compute equilibrium (minimax, Bayes-Nash,

. . .)

Problems:
• Catastrophic failure when not i.i.d.
• Assumes you know other agents’ motivations

(inappropriate level of paranoia)

Machine Learning inMulti-Agent Planning – p.19/59

Building models

Sequence HTHTHTHTHTHT . . .

Step t 1 2 3 4 5 . . .
Predict T H T H T . . .
Actual H T H T H . . .

Machine Learning inMulti-Agent Planning – p.20/59

Paranoia

2 3 4 5 6 7 8 9 T J Q K A

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 T J Q K A

0

0.2

0.4

0.6

0.8

1

Gambler Dealer

Machine Learning inMulti-Agent Planning – p.21/59

Tournament results

MaxPlayer 3.4856 Baazigar 2.3974

Victor 2.9968 Blitz 1.8700

Mouse 2.9552 CheatToLose 1.7122

TeamDiscoveryChannel 2.8924 OptPlayer (minimax) 1.5054

ActorCritic 2.8624 Corrado 0.7686

PatternRecognition 2.8572 KennyRogers -0.7920

KillerPlayer 2.7906 RandomPlayer -10.7776

YoavShohamAllStars 2.7594 SomeRegret -22.4770

Total winnings in 10,000 games (5,000 each as Dealer and Gambler)

Machine Learning inMulti-Agent Planning – p.22/59

No regret

Regret = ρ = how much do I wish I had done
something else?

E.g., opp played RRRRPRRRRSRRRR, I
played at random

Lots of regret for not playing “P all the time”

(Lots of negative regret for “S all the time”)

Machine Learning inMulti-Agent Planning – p.23/59

Comparison class

Allowable “something else” = comparison class

Little class: easy to get algorithms, but low regret
isn’t impressive

Big class: hard to get algorithms, but low regret
inspires confidence

Typical:
• all constant h ∈ H (e.g. “R all the time”)
• simple rules for modifying h (e.g. R 7→ P)

Machine Learning inMulti-Agent Planning – p.24/59

No-regret algorithms

Guarantee ρ grows slower than O(t), often O(
√

t)

Average regret ρ
t
→ 0 as t → ∞ at rate 1/

√
t

Guarantee is for all sequences of opp plays

⇒ approach equilibrium if opponent plays well,
something like CLT if opponent plays obliviously

Machine Learning inMulti-Agent Planning – p.25/59

No-regret intuition

Choose actions with positive regret

Regret for chosen action can’t increase

When two actions have similar regrets,
randomize

Machine Learning inMulti-Agent Planning – p.26/59

Algorithm recipe

Pick a potential function, F (S)

Keep track of regret vector, St

Compute F ′(St) = f(St) = H̄

Normalize to get H = αH̄ ∈ H
Play H

Machine Learning inMulti-Agent Planning – p.27/59

Regret vector and potential fn

ρ(H) = St · H = regret vs. H

safe set = {S | (∀H ∈ H) S · H ≤ 0}
In safe set ⇒ ρ ≤ 0

Potential: large outside safe set, zero inside,
bounded curvature

Machine Learning inMulti-Agent Planning – p.28/59

Regret in RPS

xt =

1 if I played R
1 if I played P
1 if I played S

yt = same for opponent

Myt = my payoffs for each action at time t

rt = xt · Myt = my payoff

st = Myt − rt1 = my regret vector

s =
∑

t st ρ = max s

Machine Learning inMulti-Agent Planning – p.29/59

Safe set in RPS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Machine Learning inMulti-Agent Planning – p.30/59

Potential

−2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

7

F (s) = ‖ [s]+‖2
2

Machine Learning inMulti-Agent Planning – p.31/59

Algorithm for RPS

Given s

Compute s+

Renormalize to get q = αs+

Randomize according to q

“Regret matching” [Hart & Mas-Colell]

Machine Learning inMulti-Agent Planning – p.32/59

One-card poker

Define X ,Y ,H and `

Define regret vector S

Pick F (will be F (S) = squared distance from
safe set)

Show how to compute F ′(S)

Machine Learning inMulti-Agent Planning – p.33/59

One-card poker

X = {1}
Y = (randomized) poker strategies

H = Y
`t = money lost on round t

Machine Learning inMulti-Agent Planning – p.34/59

Regret vector

Poker strategies are H = {h | Ah + b = 0, h ≥ 0}
Payoffs are r · h
Regret is

St =

(

rt

−rt · ht

)

Now (h, 1) · S = h · rt − rt · ht

Safe set is H⊥ = {y | y · h ≤ 0 ∀h ∈ H}

Machine Learning inMulti-Agent Planning – p.35/59

Safe set

Safe set is H⊥ = {y | y · h ≤ 0 ∀h ∈ H}

Machine Learning inMulti-Agent Planning – p.36/59

One-card poker game tree

Machine Learning inMulti-Agent Planning – p.37/59

Information states and actions

Gambler:
• Holding 2-A in first round
• Holding 2-A in second round
• Pass or bet for each

Dealer:
• Holding 2-A after pass
• Holding 2-A after bet
• Pass or bet for each

Machine Learning inMulti-Agent Planning – p.38/59

Sequences

Sequence = history of my observations and
actions, ending in my action

Ex: J pass bet bet

Special case: ε = empty sequence

Sequences for all players ⇒ leaf of game tree

1CP: 780 leaves, 638 internals, 52 seqs/player

Machine Learning inMulti-Agent Planning – p.39/59

Sequence weights

Let s, a be my info state, action

xsa =
∏

ancestors
(s′, a′) of s

P (a′ | s′)

s′ is my info state, s′ 6= s, a′ leads towards s

Ex: J pass raise call
⇒ P (pass | J)P (call | J pass raise)

Machine Learning inMulti-Agent Planning – p.40/59

Convex sequence weight set

1 1 0 0 0 0 0 0 1

−1 0 1 1 0 0 0 0 0

−1 0 0 0 1 1 0 0 0

0 −1 0 0 0 0 1 1 0

At any choice point, split flow from most recent

ancestor I control

Machine Learning inMulti-Agent Planning – p.41/59

Linear payoffs

Strategies x(sequence), y(sequence)

Payoff =
∑

leaves i riP (i | x, y)

Ex: J K pass raise call ⇒
P (J)P (K)P (pass | J)P (raise | K pass)
P (call | J pass raise)

P (J)P (K)x(J pass raise call)y(K pass raise)

Machine Learning inMulti-Agent Planning – p.42/59

The algorithm

Given game A, a and regret vector s, solve:

minx,λ

(

‖x‖2/2 − s · x
)

Ax = λa x, λ ≥ 0

Then play x/λ (or arbitrarily if λ = 0)

Note: if A = (1, 1, 1, . . .) and a = 1, then x = [s]+
(regret matching)

Machine Learning inMulti-Agent Planning – p.43/59

One-card poker self-play

0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Gambler bound
Dealer bound
Avg payoff
Minimax value

Machine Learning inMulti-Agent Planning – p.44/59

Play against fixed Gambler

0 50 100 150 200 250
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Gambler bound
Dealer bound
Avg payoff
Minimax value

Machine Learning inMulti-Agent Planning – p.45/59

Help, I need somebody

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Machine Learning inMulti-Agent Planning – p.46/59

Task allocation

[image credit: CMU’s FIRE project]

Machine Learning inMulti-Agent Planning – p.47/59

Traffic control

Machine Learning inMulti-Agent Planning – p.48/59

Basic auction algorithm

1. [everyone] Start with nominal plan

2. [auctioneer] Identify a point of interaction

3. [bidders] Calculate and submit bids

4. [auctioneer] Clear auction

5. Repeat from 2

[e.g., contract net protocol]

Machine Learning inMulti-Agent Planning – p.49/59

Auction applied to traffic control

1. Plan paths assuming we know edge costs,
store cost-to-goal

2. Execute until conflict

3. Look ahead at alternate routes, calculate bids

4. Assign best feasible combination of paths

5. Repeat from 2

Machine Learning inMulti-Agent Planning – p.50/59

Chicken and egg

Look-ahead is inefficient w/o good cost-to-goal
function

Cost-to-goal function requires good price
estimates

Accurate price estimates require successful
look-ahead

Machine Learning inMulti-Agent Planning – p.51/59

Path planning as LP

−fxy −fxz +1 = 0

fxy −fyg = 0

fxz −fzg = 0

fyg +fzg −fg = 0

fxy, fxz, fyg, fzg, fg ≥ 0

x

1

2 1

3

z

y

g

Machine Learning inMulti-Agent Planning – p.52/59

Congestion, single-agent case

−fxy −fxz +1 = 0

fxy −fyg = 0

fxz −fzg = 0

fyg +fzg −fg = 0

fzg ≤ 1/2

fxy, fxz, fyg, fzg, fg ≥ 0

x

1

2 1

3

z

y

g

Machine Learning inMulti-Agent Planning – p.53/59

Congestion, two agents

x

1

2 1

3

z

y

g x

1

2 1

3

z

y

g

−fxy −fxz +1 = 0

−gxy −gxz +1 = 0

. . .

fzg + gzg ≤ 1

fxy, fxz, . . . , gxy, . . . ≥ 0

Machine Learning inMulti-Agent Planning – p.54/59

In general

Machine Learning inMulti-Agent Planning – p.55/59

Overall algorithm

Send prices to robots

Robots plan individually, using prices to avoid
congested areas

Report paths back to master

Master finds best combination of known paths,
recalculates prices

Repeat until done

Return: cost-to-goal for each robot

Machine Learning inMulti-Agent Planning – p.56/59

Example: fuel constraint

[Animation]

Machine Learning inMulti-Agent Planning – p.57/59

Auctions and no-regret in paintball

[joint work with Curt Bererton, Sebastian Thrun]

Machine Learning inMulti-Agent Planning – p.58/59

Lookahead search

[joint work with Rosemary Emery-Montemerlo,
Sebastian Thrun]

Machine Learning inMulti-Agent Planning – p.59/59

	ML problems in multi-agent planning
	Outline
	Poker
	Poker as a machine learning problem
	Why is poker hard?
	Why is poker hard?
	Output space
	Structured prediction problem
	Poker as structured prediction
	Path planning w/ unknown costs
	Path planning as structured prediction
	Adversarial path planning
	Lookahead in multiagent planning
	Lookahead, cont'd
	One-card poker
	Rock-paper-scissors
	Rock-paper-scissors
	Neither statistical nor adversarial
	Building models
	Paranoia
	Tournament results
	No regret
	Comparison class
	No-regret algorithms
	No-regret intuition
	Algorithm recipe
	Regret vector and potential fn
	Regret in RPS
	Safe set in RPS
	Potential
	Algorithm for RPS
	One-card poker
	One-card poker
	Regret vector
	Safe set
	One-card poker game tree
	Information states and actions
	Sequences
	Sequence weights
	Convex sequence weight set
	Linear payoffs
	The algorithm
	One-card poker self-play
	Play against fixed Gambler
	Help, I need somebody
	Task allocation
	Traffic control
	Basic auction algorithm
	Auction applied to traffic control
	Chicken and egg
	Path planning as LP
	Congestion, single-agent case
	Congestion, two agents
	In general
	Overall algorithm
	Example: fuel constraint
	Auctions and no-regret in paintball
	Lookahead search

