Geoff Gordon
ggordon@s. crmu. edu

Machine Learning inMulti-Agent Planning — p.1/59

ML problems in multi-agent planning

Structured prediction problems
Interference from other agents

Help from other agents

Machine Learning inMulti-Agent Planning — p.2/59

Interference from other agents
e No-regret algorithms

Help from other agents
e Auction algorithms

Examples and experiments

Machine Learning inMulti-Agent Planning — p.3/59

Machine Learning inMulti-Agent Planning — p.4/59

Poker as a machine learning problem

Prediction problem:

e From: background knowledge, observations
of players

e Predict: how should | play in next hand

How should | play:

e From: history of observations and actions In
current hand

e Predict: should | bet on this round?

Machine Learning inMulti-Agent Planning — p.5/59

Why Is poker hard?

Big output space
Don’t get information about “what ifs”
Structured output space

Neither adversarial nor cooperative

Machine Learning inMulti-Agent Planning — p.6/59

Why iIs poker hard?

Big output space
Don’t get information about “what ifs”
Structured output space

Neither adversarial nor cooperative

Machine Learning inMulti-Agent Planning — p.7/59

Behavior strategy: information state — P(action)
0 1]# Info states

O K pass pass betcall 87K +— P(bet) =.72

Structured prediction problem

e X': INnput space

e). prediction space

e H: hypothesis space

e /;: loss functions ((y — 5)?, Dkr(y | (:2,.3,.5)))

Will assume H is convex, C R4xn

May have many vertices, many faces, or other
complex features, but we have an efficient
description

Machine Learning inMulti-Agent Planning — p.9/59

Poker as structured prediction

e X': has BIill been drinking

e). dist’n over behavior strategies
o H: A —)Y

e /;: money |l lose in hand ¢

ath planning w/ unknown costs

'b.ﬁes._zrvé’;{q_ms:ﬁk_ ’ ';Aﬂ, 2
N T I
_=Horthyie Heiﬂts"-q-”‘!ur{a--

o, i r § .\

|
[2004 Yahoo! inc

Machine Learning inMulti-Agent Planning — p.11/59

Path planning as structured prediction

/ day of week \
X = | phase of moon

\ recent eclipse |
Y = paths in map
H=Xx+—)

ly) =(c+C)-y

Adversarial path planning

ookahead in multiagent planning

Machine Learning inMulti-Agent Planning — p.14/59

| ookahead, cont’d

X = features of current history

Y = behavior strategies

H=X—)Y

{(y) = E(heuristic(leaf)) (note: what ifs)

One-card poker

Bet $0| Bet $1| Dedl

R;oeetl

Y ou have won $0 so far.
Y ou and the computer each ante $1.
Your card isA. What do you bet?

Machine Learning inMulti-Agent Planning — p.16/59

Rock-paper-scissors

R P S
R O 1 -1
P-1 0 1
S|1 -1 0

Rock-paper-scissors

—— World APS Store | Media Archive | About Us | The Bull Board Contact Us = Membership
CONGRATULATIONS LEE RAMMAGE

RPS Home
Advanced RPS
Game Basics
Gambits
Online Tralner
Think Three
FAQ
RPS Links

:What's New @ World,
The Official Rock Paper Sc1ss0rs Lead On and Power Stealth

Strategy Guide T-shirts are back! New Membership Packages
Available

PR

"'_l Jﬁ-. o brk _,{

Due to public demand we have

restocked our ever-popular Lead We have completely

2004 Hps International ___. L= (T)_nS k?:}?s Power Stealth Ingenuity rcz-'%engdnggetug vr\:wgfrpetl)‘ienrship
World Championsnips A = ' basic and deluxe packages

- See World RPS Store for details ~ Which include an RPS t-shirt
ROCK: PAPER and more.

, SCISSORS

~ .- na ' o ~

Machine Learning inMulti-Agent Planning — p.18/59

Neither statistical nor adversarial

Possible approaches:

e Learn model of environment (incl. other
agents)

e Compute equilibrium (minimax, Bayes-Nash,
)
Problems:
e Catastrophic failure when not 1.1.d.

e Assumes you know other agents’ motivations
(Inappropriate level of paranoia)

Building models

Sequence HI'THTHTHTHTHT ...

Stept | 1 2 3 4 S
Predict H H
T T

T T
H H

T
Actual | H

aranoila

0.8

0.6

0.4

0.2

Gambler

0.8

0.6

0.4

0.2

Dealer

Machine Learning inMulti-Agent Planning — p.21/59

Tournament results

MaxPlayer 3.4856 Baazigar 2.3974
Victor 2.9968 Blitz 1.8700
Mouse 2.9552 CheatToLose 1.7122
TeamDiscoveryChannel 2.8924 OptPlayer (minimax) 1.5054
ActorCritic 2.8624 Corrado 0.7686
PatternRecognition 2.8572 KennyRogers -0.7920
KillerPlayer 2.7906 RandomPlayer -10.7776
YoavShohamAllStars 2.7594 SomeRegret -22.4770

Total winnings in 10,000 games (5,000 each as Dealer and Gambler)

Machine Learning inMulti-Agent Planning — p.22/59

Regret = p = how much do I wish | had done
something else?

E.g., opp played RRRRPRRRRSRRRR, |
played at random

Lots of regret for not playing “P all the time”

(Lots of negative regret for “S all the time”)

Comparison class

Allowable “something else” = comparison class

Little class: easy to get algorithms, but low regret
ISN’t Impressive

Big class: hard to get algorithms, but low regret
Inspires confidence

Typical:
e all constant h € 'H (e.qg. “R all the time”)
e simple rules for modifying i (e.g. R — P)

No-regret algorithms

Guarantee p grows slower than O(t), often O(v/t)

Average regret £ — (0 as ¢ — oo atrate 1/+/t

Guarantee Is for all sequences of opp plays

= approach equilibrium if opponent plays well,
something like CLT if opponent plays obliviously

Machine Learning inMulti-Agent Planning — p.25/59

No-regret intuition

Choose actions with positive regret

Regret for chosen action can’t increase

When two actions have similar regrets,
randomize

Machine Learning inMulti-Agent Planning — p.26/59

Algorithm recipe

Pick a potential function, F'(.S)

Keep track of regret vector, S,
Compute F'(S;) = f(S;) = H
Normalize to get H = aH € 'H
Play H

Regret vector and potential fn

p(H)=.S5;-H =regretvs. H
safeset={S | (VH e H) S-H <0}

n safe set = p <0

Potential: large outside safe set, zero inside,
pounded curvature

Regret In RPS

/1if oayecR\
= | 1lifl played P
\ 1ifIplayed S)

Yy = Same for opponent

My, = my payoffs for each action at time ¢
ry = x; - My, = my payoff
s; = My, — r;1 = my regret vector

S=> .5 p = max s

Safe set In RPS

-0.2 _

-0.6 .

-0.8 _

Machine Learning inMulti-Agent Planning — p.30/59

Potential

Algorithm for RPS

Given s

Compute s

Renormalize to get ¢ = ass_,
Randomize according to ¢

“Regret matching” [Hart & Mas-Colell]

One-card poker

Define X', Y, ’H and ¢
Define regret vector S

Pick F' (will be F'(S) = squared distance from
safe set)

Show how to compute F'(S)

One-card poker

A =11}
Y = (randomized) poker strategies
H=Y

¢; = money lost on round ¢

Regret vector

Poker strategiesare H = {h | Ah+b=0, h > 0}

Payoffs are r - h

Tt
S, =

NOW(h,l)'S:h°Tt—Tt°ht
Safesetis H ={y |y-h<0Vhe H}

Regret Is

Safesetis H- ={y |y-h<0Vhe H}

One-card poker game tree

(2,1) 2,3) (1,3)

Information states and actions

Gambler:
e Holding 2-A in first round
e Holding 2-A in second round
e Pass or bet for each

Dealer:
e Holding 2-A after pass
e Holding 2-A after bet
e Pass or bet for each

Seguences

Sequence = history of my observations and
actions, ending in my action

Ex: J pass bet bet

Special case: ¢ = empty sequence

Sequences for all players = leaf of game tree
1CP: 780 leaves, 638 internals, 52 seqs/player

Seguence welights

Let s, a be my info state, action

Toq = H P(d' | s
ancestors
(s',a") of s
s" Is my info state, s’ # s, a’ leads towards s

Ex: J pass raise call
= P(pass | J)P(call | J pass raise)

Convex seqguence weight set

00000 O0f1)

/\/\ 1 0 1 1000 0]0
1 0 00 1 10 0|0

/\/\ \ 0 -1 0000 1 1]/0/

At any choice point, split flow from most recent
ancestor | control

Linear payoffs

Strategies x(sequence), y(sequence)

Payoff= >,1mP(E | z,y)

Ex: J K pass raise call =
P(J)P(K)P(pass | J)P(raise | K pass)
P(call | J pass raise)

P(J)P(K)x(J pass raise call)y(K pass raise)

The algorithm

Given game A, a and regret vector s, solve:

min,) (||z]|*/2 — s -)

Ax = da x,A>0

Then play x/X (or arbitrarily if A = 0)

Note: if A= (1,1,1,...)and a = 1, then z = [s],
(regret matching)

One-card poker self-play

06 T T T T T T
- Gambler bound
- Dealer bound
0.5F Avg payoff H
+ Minimax value

0.4 s
0.3 s
0.2 s
0.1 s
O - —
-0.1f s
-0.2| s
-0.3| s

_04 | | | | | |
0 50 100 150 200 250

Machine Learning inMulti-Agent Planning — p.44/59

Play against fixed Gambler

06 T T T T T T
- Gambler bound
- Dealer bound
0.5F Avg payoff

+ Minimax value

0.4 —

-0.1f —

-0.2 —

-0.3f —

0 50 100 150 200 250

Machine Learning inMulti-Agent Planning — p.45/59

Help, | need somebody

Machine Learning inMulti-Agent Planning — p.46/59

Task allocation

[image credit: CMU'’s FIRE project]

Traffic control

Salt Lake
[rternatinmal

Privvae Adrport

Machine Learning inMulti-Agent Planning — p.48/59

Basic auction algorithm

‘everyone] Start with nominal plan
‘auctioneer] Identify a point of interaction
bidders]| Calculate and submit bids

‘auctioneer] Clear auction

a ~ WD PE

Repeat from 2

[e.g., contract net protocol]

Auction applied to traffic control

1. Plan paths assuming we know edge costs,
store cost-to-goal

2. Execute until conflict
3. Look ahead at alternate routes, calculate bids
4. Assign best feasible combination of paths

5. Repeat from 2

Chicken and egg

Look-ahead is inefficient w/o good cost-to-goal
function

Cost-to-goal function requires good price
estimates

Accurate price estimates require successful
look-ahead

Machine Learning inMulti-Agent Planning — p.51/59

Path planning as LP

—fay —Ja2 +1 =
f:vy _fyg

Sz —Jzg

fyg 19 —Jg —

/@X Fros Foos o Foon 1
%@x@/@%

|
o O o O

IV
-

Congestion, single-agent case

_fflfy _fa:z +1 = 0
Sy —Fro _

Jaz ~frg — 0

fyg _|_fzg —fg — 0

1 < 1/2

%/ f:vy;fxz;fyg,fzg,fg > 0

Congestion, two agents

Jou oy
%@i@ jos %@i‘é >@%

_fa;y _fxz +1 = (
“Yzy TGz +1 = 0
fzg +gzg g 1
fwy7f$27'°°7gxy,... Z O

In general

MDP fregs

1

conservation
of probability

conservation
of resources

Machine Learning inMulti-Agent Planning — p.55/59

Overall algorithm

Send prices to robots

Robots plan individually, using prices to avoid
congested areas

Report paths back to master

Master finds best combination of known paths,
recalculates prices

Repeat until done

Return: cost-to-goal for each robot

Machine Learning inMulti-Agent Planning — p.56/59

Example: fuel constraint

[Animation]

Auctions and no-regret in paintball

[joint work with Curt Bererton, Sebastian Thrun]

| ookahead search

[joint work with Rosemary Emery-Montemerlo,
Sebastian Thrun]

	ML problems in multi-agent planning
	Outline
	Poker
	Poker as a machine learning problem
	Why is poker hard?
	Why is poker hard?
	Output space
	Structured prediction problem
	Poker as structured prediction
	Path planning w/ unknown costs
	Path planning as structured prediction
	Adversarial path planning
	Lookahead in multiagent planning
	Lookahead, cont'd
	One-card poker
	Rock-paper-scissors
	Rock-paper-scissors
	Neither statistical nor adversarial
	Building models
	Paranoia
	Tournament results
	No regret
	Comparison class
	No-regret algorithms
	No-regret intuition
	Algorithm recipe
	Regret vector and potential fn
	Regret in RPS
	Safe set in RPS
	Potential
	Algorithm for RPS
	One-card poker
	One-card poker
	Regret vector
	Safe set
	One-card poker game tree
	Information states and actions
	Sequences
	Sequence weights
	Convex sequence weight set
	Linear payoffs
	The algorithm
	One-card poker self-play
	Play against fixed Gambler
	Help, I need somebody
	Task allocation
	Traffic control
	Basic auction algorithm
	Auction applied to traffic control
	Chicken and egg
	Path planning as LP
	Congestion, single-agent case
	Congestion, two agents
	In general
	Overall algorithm
	Example: fuel constraint
	Auctions and no-regret in paintball
	Lookahead search

