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Jacquard Loom, National Museum of Scotland 
“The Jacquard mechanism, invented by Frenchman Joseph Marie Jacquard and first demonstrated in 

1801, simplified the way in which complex textiles such as damask were woven. The mechanism involved 

the use of thousands of punch cards laced together. Each row of punched holes corresponded to a row of 

a textile pattern.” 
 

https://www.nms.ac.uk/explore-our-collections/stories/science-and-technology/jacquard-loom/ 

 

“The Jacquard loom utilized  punch cards to aid in the automation of textile patterns. These punch cards 

were an inspiration for the first punch cards used to program early computer systems. The front image is 

a representation of the type of textile pattern that could be automated by the Jacquard loom. These 

beautiful patterns and textiles inspired the theme of this publication that weave together important 

ideas in the development of computer science.” 

Gavin Jensen  
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Syllabus 2020 
The course CS 611 consists of three components: Tools, Papers, and Stories. The Tools are selections 
from Linear Algebra and Learning from Data by Gilbert Strang, taught by the Ph.D. candidates to 
each other, with coaching from the faculty advisor. The Papers are seminal papers in the field, as 
chosen by faculty in the department. The Stories section reviews the history of Computer Science as 
a discipline, mostly following The Universal Computer: The Road from Leibniz to Turing, by Martin 
Davis, and it culminates in a student exposition following the “thread”, or evolution of an idea of 
their choosing, published here. This section surveys details from each part of the course. 

Tools 
1. Highlights of Linear Algebra 

1. Multiplication 𝐴𝑥 Using Columns of 𝐴 
2. Matrix-Matrix Multiplication 𝐴𝐵 
3. The Four Fundamental Subspaces 
4. Elimination and 𝐴 = 𝐿𝑈 
5. Orthogonal Matrices and Subspaces 
6. Eigenvalues and Eigenvectors 
7. Symmetric Positive Definite Matrices 
8. Singular Values and Singular Vectors in the SVD 
9. Principal Components and the Best Low Rank Matrix 
10. Rayleigh Quotients and Generalized Eigenvalues 
11. Norms of Vectors and Functions and Matrices 
12. Factoring Matrices and Tensors: Positive and Sparse 

2. Computations with Large Matrices 
1. Numerical Linear Algebra 
4. Randomized Linear Algebra 

4. Special Matrices 
6. Graphs and Laplacians and Kirchoff’s Laws 
7. Clustering by Spectral Methods and k-Means 

5. Probability and Statistics 
1. Mean, Variance, and Probability 
2. Probability Distributions 
3. Moments, Cumulants, and Inequalities of Statistics 
4. Covariance Matrices and Joint Probabilities 
5. Multivariate Gaussian and Weighted Least Squares 
6. Markov Chains 

6. Optimization 
1. Minimum Problems: Convexity and Newton’s Method 
4. Gradient Descent Toward the Minimum 

7. Learning from Data 
2. Convolutional Neural Nets 
3. Backpropagation and the Chain Rule 
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Computationalism versus
Naturalism
Gavin Jensen
Brigham Young University

Abstract—Computational theories of mind are committed to the idea that the human mind is a
computational system. This paper explores the history and philosophical assumptions behind
computationalism and presents an important, though less well-known, objection to
computationalism proposed by the philosopher John Searle.

ALTHOUGH COMPUTATION WAS INVENTED
to address specific problems in classical mathe-
matics, it inspired new paradigms in philosophy,
biology, and physics. These paradigms culmi-
nated in what can generally be called computa-
tionalism. Computationalism applied to the mind
can be summarized by the oft-quoted phrase,
“The mind is to the brain, as the program is to the
hardware.”[1] This computational theory of mind
(CTM) assumes that the mind is a computer pro-
gram. And the right sort of implemented program
(natural or artificial) is sufficient to produce men-
tal contents such as beliefs, thoughts, desires, in-
tentions, and conscious experiences. John Searle
named this view Strong Artificial Intelligence, but
it also goes by the name computer functionalism.
A closely related claim called cognitivism posits
that the brain is a digital computer. In his 1990
essay, “Is the Brain a Digital Computer?” Searle
presented a serious objection to computational-
ism. Computation, Searle argued, is observer-
relative and therefore not eligible to count as an
intrinsic feature of any physical system, including
the brain.

These ideas are outlined in three main sec-
tions. Part 1 explores concepts of computation as
inspired by Turing machines and information the-
ory. Part 2 outlines a modern history of the philos-
ophy of mind as it co-evolved with artificial intel-
ligence, culminating in the computational theory

of the mind. Part 3 outlines John Searle’s primary
argument against computationalism and situates
that argument within the broader framework of
scientific naturalism. This section also explores
why Searle’s objection is ultimately unanswerable
by his naturalist critics. Finally, this paper will
summarize important implications of these ideas
for popular theories in biology and physics.

Part 1: Turing Machines, Information,
and Computation

The birth of the computer, according to
Martin Davis, begins with the philosopher and
mathematician Wilhelm Gottlieb Leibniz, who
invented calculus and the symbolic system of
calculus used today. Leibniz dreamed of a uni-
versal characteristic that could calculate all truth
by purely mechanical and symbolic means. This
dream inspired philosophers and mathematicians
for centuries and contributed to developments in
symbolic logic.

In the early 1900s, the mathematician David
Hilbert challenged the mathematical community
to discover an algorithm that could prove whether
any mathematical statement was true or false. In
mathematics, a mathematical statement is called
decidable if it can be proven true or false. If a
solution could be found for Hilbert’s ‘decidable
problem,’ or entscheidungsproblem in German,
then any mathematical question could, in princi-
ple, be answered by purely mechanical means. A
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Computationalism versus Naturalism

Figure 1: Components of a Turing machine

solution to the entscheidungsproblem would have,
to a considerable extent, been “a fulfillment of
Leibniz’s dream.”[2]

In 1936, the young mathematician and lo-
gician Alan Turing proved that “the Hilbertian
Entscheidungsproblem can have no solution.”[3]
Turing’s proof employed a novel thought ex-
periment that imagined a hypothetical machine
called an a-machine or automatic machine. Tur-
ing’s proof says that (A) for every mathematical
statement or problem that can be decided (proven
true or false with an algorithm), that problem can
be decided by an a-machine. Turing then proved
that (B) there are some problems which cannot be
decided with an a-machine. Therefore, (C) there
is no algorithm that can decide every problem.
Turing’s a-machines later became known as Tur-
ing machines (TM).

The first part of Turing’s proof states that
for any algorithm, there is some TM that can im-
plement that algorithm. This is called the Church-
Turing thesis, independently developed by Turing
and Alonzo Church. It was crucial in providing a
more precise definition of an algorithm that could
be used for mathematical analysis.

Turing Machines
Turing machines are abstract mathematical

concepts that manipulate symbols printed on an
infinitely long paper tape. The behavior of a
Turing machine is “governed in part by internal
mechanisms and in part by the specific symbols
found on the tape.”[4] TMs have four actions.
They can read symbols, erase symbols, write
symbols, and shift attention to new symbols by
moving left or right along the tape. The state of
the machine (its ‘internal mechanism’) dictates

which action it will perform next. There are three
states: a start state, an intermediate state, and an
end or halting state that can output “accept” or
“reject.” Turing showed that any task could be
recursively decomposed or broken down into ever
smaller tasks. The smallest tasks were simple op-
erations that could be performed using only two
symbols, such as ‘0’s and ‘1’s. Turing imagined
these symbols written down sequentially in sepa-
rate boxes along the tape. A TM transitions from
one state to another as it scans symbols on the
tape and looks up which action it should perform
next. For example, a TM could scan the symbol
‘1’ on the tape, look up its current state, and then
perform the action to erase the ‘1’, write a ‘0’,
and move one square to the right. This process
will continue, eventually reaching a halting state,
or more interestingly, it will continue printing
symbols forever without ever halting.

A universal Turing machine is a TM that
can simulate any other possible TM. The concept
of a Universal TM combined with the Church-
Turing thesis entails that a Universal TM can
compute any function that is computable by an
algorithm.

Syntax, Symbols, and Semantics
Turing machines are called syntactical en-

gines because they manipulate symbols. Syntax
refers to the form of some representation such as
symbols and sequences of symbols called strings.
A TM uses algorithmic procedures to manipulate
strings of symbols. According to Michael Sipser’s
Introduction to the Theory of Computation, “The
input to a Turing machine is always a string. If
we want to provide an object other than a string
as input, we must first represent that object as a
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string. . . A Turing machine may be programmed
to decode the representation so that it can be
interpreted in the way that we intend.”[5] A
description of a TM is a string of symbols that
defines that TM’s function. These descriptions
can be used as input for another TM.

Semantics is often contrasted with syntax.
Semantics refers to the meaning that gets as-
signed to the symbols. You can have different
syntax with the same semantics and vice versa.
For instance, the English word “chair” has the
same meaning as the Russian word, “stul” even
though the syntax is different. Syntax has no
intrinsic meaning or content. Consider the words
you are reading right now. The symbols on the
screen or printed page are just an arrangement of
meaningless pixels or ink marks. They only have
semantic meaning because you, as the reader, can
do two things at once. First, you interpret the
marks as symbols. For example, the ink marks
or pixels that form the shape of a ‘c’ can be
recognized as the letter ‘c’. Second, you interpret
strings of symbols as having a specific semantic
content or message. The string of symbols “c-h-a-
i-r” can have the semantic meaning of referring to
a particular “chair,” for example. Algorithms act
on the form, or syntactical structure, regardless of
the semantic meaning of the forms.

Information

The history of computational theory goes
hand-in-hand with information theory. In 1948,
Claude Shannon wrote A Mathematical Theory
of Communication which defined a binary digit
or “bit” as a unit for measuring an exact quantity
of information in some system. One bit of infor-
mation can represent two possibilities. According
to Shannon, “A device with two stable positions,
such as a relay or a flip-flop circuit, can store one
bit of information.” In computer science, the sym-
bols ‘0’ and ‘1’ are conventionally assigned to the
physical states of a computational system. Tech-
nically, in a physical system such as a computer,
there are no 0s and 1s. There are only certain
voltages of transistors, for instance, that can count
as if they were a ‘0’ or a ‘1’. Applying these
concepts to Turing machines, Shannon showed
how to construct a universal Turing Machine with
only two states.[2]

When Shannon presented his theory of in-
formation, he was not referring to information
in the common usage of the term. In ordinary
usage, information is constituted by some mean-
ingful message or semantic content. Shannon with
his collaborator Warren Weaver wrote that, “The
word information, in this theory, is used in a
special sense that must not be confused with its
ordinary usage. In particular, information must
not be confused with meaning,” and that “the
semantic aspects of communication are irrelevant
to the engineering problem.”[6]

Information in the semantic sense can be
intrinsic or derived. Intrinsic information is in-
formation that conscious beings have. It is con-
stituted by intrinsic mental processes such as
perception and memory. Derived information is
information that can be interpreted as having
semantic meaning. The semantic information con-
tained in the words you are reading now is
derived. Information in the syntactic sense refers
to the symbolic state transitions of Turing ma-
chines that are instantiated in a physical system.
The term information processing is often used
interchangeably with computation.1

Figure 2: Levels of computation from implemen-
tation(bottom) to semantics(top)

1Technically, computation is only one type of informa-
tion processing. Information processing can refer to effective
computation, distributed processing, and dynamical systems
processing.[7]
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Direct Versus Symbolic Reasoning
Leibniz dreamed of a universal character-

istic that could solve any problem and discover
new knowledge by manipulating symbols using
mechanical means. What is so important about
using symbols? Why not reason about concepts
directly? A partial answer suggests that reasoning
can be simplified by using symbols. Symbols en-
able us to abstract away the meaning of concepts
behind the symbols to focus on the logical rela-
tionships between the symbols. When the logical
relationships are clear, we can more precisely
and efficiently reach conclusions, expose faulty
reasoning, and discover new knowledge. Under-
standing the relationship between direct reasoning
and reasoning through symbolic processes illumi-
nates different conceptions of computation.

Reasoning about Concepts
Reasoning about concepts directly involves

seeing how a conclusion follows from a set of
premises. For example, when presented with the
premises, ”Socrates is a man” and ”all men are
mortal,” we can reason towards the conclusion
that “Socrates must be mortal.” The top level in
figure 2 represents direct reasoning from starting
premises A towards some conclusion in end state
B. This process of going from A to B can be
generalized to include cognitive processes more
generally such as perception, memory-retrieval,
and belief-formation.

Intentionality
These cognitive processes are semantic be-

cause they are ‘about’ or ‘directed at’ something
outside of themselves. We understand what the
words ‘Socrates,’ ‘man,’ and ‘mortal’ refer to in
reality. This ability of the mind to be ‘about’ or
’directed at’ some object or state of affairs in
reality is called intentionality. Intentional states
include beliefs, desires, and intentions. A per-
son’s conscious mental states are intentionalistic
because they involve an awareness of things that
exist independently of the person. Thinking is
likewise intentionalistic as it involves thinking
‘about’ something. A belief about Socrates is
intentional because it is directed at Socrates,
for instance. Often the word ’intentionality’ is
confused with intentions or goal-oriented activity,
but intentions are only one type of intentionality.

Reasoning about Symbols
Reasoning about symbols enables us to ar-

rive at conclusions without worrying about what
the symbols are ‘about.’ We can represent the
premises and conclusion of our example as fol-
lows:

Socrates is a man X is a Y
All men are mortal All Y are Z
Socrates is mortal X is Z

In this case the premise A is represented as
the string of symbols A′. Applying simple rules
to this string of symbols leads to a symbolic
conclusion B′. This symbolic conclusion can then
be interpreted as having the semantic conclusion
B that was intended. This process is shown in the
middle layer of the diagram in figure 2.

There can be multiple levels of symbolic
representation. The “X” in “X is a Y,” for exam-
ple, can be represented as the decimal representa-
tion “088”2, and that representation could be rep-
resented in binary code as the string “01011000.”
Instead of having discrete symbols represent a
specific semantic concept, these symbols could
be represented in a neural network where the “in-
formation” constituted by a symbol is distributed
across the weights and activations of the network.
The syntactical level is all about manipulating
symbols through algorithms. In mathematics, this
process of linking semantics to syntax is called
formalization. Proof theory shows how semantic
relationships between propositions can be mir-
rored by syntactical relationships within certain
well-known limits.[4]

Physical Implementation
The process of manipulating symbols to

arrive at symbolic conclusions can be automated.
This is possible through engineering physical sys-
tems that mirror the steps of the algorithms used
to manipulate those symbols. A physical system
can automate symbolic algorithms if (1) there is
a starting and ending states A′′ and B′′ that map
to our symbolic states A′ and B′ and (2) the
physical state transformations map to our algo-
rithmic procedures. The physical systems used to
automate syntactic algorithms are typically called

2X is “088” according to the American Standard Code for
Information Interchange or ASCII
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computers. According to biologist John Mayfield,
“A computer can be seen as a device in which one
state (the input) interacts with another state (the
current machine configuration) to produce a final
state (the output).”[8] However, it may be clearer
to talk about “computational systems” instead
of “computers” to avoid being misunderstood as
referring to the consumer devices found at Best
Buy.

So far, the picture outlined above shows
how semantic concepts can be represented as
symbols. These symbols can then be mapped onto
the states of physical systems. The benefit of
engineering systems in this way is that they can
automate some of our cognitive processes.

Multiple Realizability

An important aspect of computational sys-
tems is that the material composition of its im-
plementation is irrelevant. Computational sys-
tems can be realized in (i.e., implemented in)
any physical system or hardware that is suffi-
ciently complex enough to carry out the steps
of some algorithm. Computations can be imple-
mented using electrical relays with binary states
representing ‘1’s and ‘0’s. They can be made
with marbles falling down tracks with gates that
switch directions as marbles fall through.3 Even
a person consciously carrying out the steps of a
Turing machine in their head or with pencil and
paper counts as a computational system. More
bizarrely, the philosopher Zenon Pylyshyn wrote
that computational sequences could be realized
in “a group of pigeons trained to peck as a
Turing machine.”[9] As long as the physical states
correspond to (i.e., are isomorphic to) the states
of a given algorithm, these examples are literally
computationally equivalent. The principle that
the hardware implementation is irrelevant to a
computational system is the principle of multiple
realizability—a concept explored more in part 2
and 3.

So What is Computation?

Computation can be defined in several
ways. For the purposes of this paper, I will

3You can build one of these yourself by purchasing the highly
recommended learning toy Turing Tumble

contrast what I will call intentionalistic compu-
tation with Turing computation. Intentionalistic
computation is just another way to talk about
direct reasoning. When someone consciously car-
ries out the steps of some computation, they are
performing intentionalistic computation. Mental
math is a simple example. The original definition
of “computer” was not an engineering artifact.
‘Computer’ was a job description for humans
that perform computations, like an accountant or
auditor. Intentionalistic computation may involve
symbols, but the agent performing computation
brings the interpretation to those symbols.

Turing computation is digital computation.
Turing computation refers to the manipulation of
symbols according to a set of rules where the
symbols or bits of information are instantiated
in some physical system. A physical system is
said to be performing computation when it moves
from one state to another according to the rules
of some algorithm. The computational theory of
mind assumes that intentionalistic computation is
caused by Turing computations in the brain.

Part 2: From Dualism to
Computationalism

The philosophy of mind aims to develop
a logical foundation for understanding what the
mind is and how it works. Trying to solve these
problems has been described as “a veritable tan-
gle of tangles.”[10] Theories of the mind can-
not be separated from metaphysical commitments
about the nature of reality in general. Popular
theories in the philosophy of mind evolved along-
side scientific and technological innovations. The
following account of the philosophy of mind
outlines a rough historical background for com-
putationalism, beginning with the philosopher and
mathematician René Descartes.

From Dualism to Materialism

For Descartes, the primary feature of the
human mind was the ability to think as expressed
in his famous phrase, “I think, therefore I am.”
Descartes reasoned that the mind must be a
separate substance from the body since “the body
is by its nature always divisible, while the mind
is utterly indivisible.” This theory of mind, called
“Cartesian Dualism” or “Substance Dualism,”
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posits two fundamentally different aspects of re-
ality—mind and matter. Dualism, as described
by philosopher Gilbert Ryle, is “the dogma of
the Ghost in the Machine.”[11] One weakness
of dualism is the lack of satisfying accounts for
how the mind, which is immaterial, is supposed
to interact with the body, which is material. This
classic mind/body problem led many philosophers
to adopt a naturalistic stance broadly called ma-
terialism. According to materialism, the mind,
or whatever is constitutive of a mind, is not a
separate substance but is part of the material
world.

Behaviorism & the Birth of AI

An early form of materialism was “behav-
iorism”—the idea that the mind is constituted by
behavior. Behaviorism posits that mental states
are just dispositions towards certain behavioral
outputs given certain environmental inputs. This
theory is related to the “verifiability theory,”
advanced by the logical positivists in the first
half of the 20th century. The verification theory
posits that the meaning of any statement just
is its means of verifying that statement. With-
out some means of verification, a statement is
meaningless. According to philosopher Edward
Feser, “This theory seemed to make behaviorism
almost unavoidable: if the only evidence you
could have for verifying claims about what other
people are thinking is the behavior they exhibit,
then to say that they are thinking must be nothing
more than to say that they tend to exhibit certain
behaviors.”[8]

In 1950, when behaviorism was the domi-
nant theory of mind, Alan Turing wrote “Com-
puting Machinery and Intelligence.” In this paper
Turing argued that a computer could be said
to ‘think’ if it passes the imitation game. This
imitation game, later called the “Turing test,” is a
test of intelligence for computers. If a computer
running a program can fool someone into thinking
it is human, then it passes the test. Turing echoed
the verification theory when he wrote, “The ques-
tion, ‘Can machines think?’ I believe to be too
meaningless to deserve discussion.”[12] This sen-
tence is verificationist because it implies that the
question of whether a machine can “think” can
only be meaningfully framed in terms of some

method for verifying that statement. The Turing
test was designed to serve this role. Passing
the Turing test does not just provide evidence
that machines could think; passing the Turing
test verifies the existence of the behavior that
constitutes thinking itself.

Inspired by Turing’s vision, several re-
searchers turned their attention toward building
thinking machines. The term artificial intelligence
was coined by John McCarthy, who wrote the
proposal for the Dartmouth Summer Research
Project on Artificial Intelligence in 1956. For
some, the goal of artificial intelligence was not
to create literal thinking machines but to more
modestly produce computer programs that would
simulate or mimic some aspects of human thought
in order to perform useful tasks. This is called
the “engineering approach” to AI. Others were far
more ambitious and believed that computers were
sufficient to create actual minds. The philosopher
John Haugeland wrote, “The fundamental goal of
this research is not merely to mimic intelligence
or produce some clever fake. Not at all. ‘AI’
wants only the genuine article: machines with
minds, in the full and literal sense.”[13] This
second approach has been called the “cognitive
approach” to AI. The engineering and cognitive
approaches have been called the “two souls of
AI”[14] which both claim a common heritage in
the Dartmouth workshop.

From Behaviorism to Functionalism

Eventually, verificationism fell out of favor
along with behaviorism. Verificationism failed
because it was self-refuting. If statements are
only meaningful if they were verifiable, then the
verification theory must be meaningless since it
cannot verify itself. A fundamental problem with
behaviorism was that it could not account for
consciousness or intentionality. Behaviorism led
to the absurd conclusion that if being in pain
just means that you are disposed to act a certain
way, then the only way you could verify that you
were in pain would be to look in the mirror and
examine if you have any pain-related behaviors
such as wincing or screaming.

Other materialist theories were proposed to
remedy the failings of behaviorism. One such
theory, called Identity Theory, argued that the
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mind is not just correlated with brain processes,
but that mental states such as beliefs, desires,
visual sensations, etc. are literally identical to
brain processes. But this theory too fell out of
favor for implying “neuronal chauvinism.”[11] If
a mental state was identical to some brain state,
then that mental state could not be realized in
a system that was not made of neurons in the
exact same way. In other words, identity theories
excluded multiple realizability for the mind.

In the 1960s, Functionalist theories were
proposed to replace behaviorism and identity
theories. Functionalism has been the dominant
theory of mind since the 1970s. Functionalism
embraces multiple realizability by modeling the
mind, not in terms of what it is made of, but in
terms of its functional and causal properties. It
does not matter what a chair is made of as long
as it can function as furniture for sitting. It is the
same with mental states. The mind stands in a
functional or causal relationship between a per-
son’s external stimuli (inputs) and behavioral out-
puts. Mental states such as perceptions, beliefs,
desires, intentions, and sensation are functional
states that can be realized in brain states.

The Computational Theory of Mind (CTM)

As early as 1943, Warren McCulloch and
Walter Pitts developed a mathematical model of
neural networks and suggested that the mind
could be modeled by Turing machines. Since
then, there have been several variations of the
Computational Theory of Mind (CTM). In 1967,
the philosopher Hilary Putnam argued for a form
of functionalism called “Computer Functional-
ism” which argued that any creature with a mind
is a Universal Turing Machine with probabilistic
transitions between the states of the system. Com-
puter functionalism rose in popularity along with
the growth of artificial intelligence in computer
science.

During the 1960s, psychologists, philoso-
phers, linguists, and computer scientists formed
a research agenda called “cognitive science.” The
tri-level hypothesis in cognitive science says that
the mind can be analyzed with three levels. First,
there is the implementation level constituted by
the physical structure and organization in which
mental processes are realized. Second, there is

the algorithmic or syntactic level, where infor-
mation processing (in the syntactic sense) was
done. The third and highest level is the computa-
tional or semantic level of analysis which “asks
what information processing problem (such as
visual perception or higher-level thought) is being
solved by a cognitive agent?” Cognitive science
is “the study of ‘mind as machine’”, according
to Margaret Boden, for “the core assumption is
that the same type of scientific theory applies to
minds and mind-like artefacts. More precisely,
cognitive science is the interdisciplinary study
of mind, informed by theoretical concepts drawn
from computer science and control theory.”[15]

CTM makes two related but separate claims.
The first claim is that the human brain is a digital
computer. Searle calls this claim Cognitivism. The
second claim is that the mind is constituted by
Turing computation. Zenon Pylyshyn wrote the
“natural domain of human functioning (roughly
what we intuitively associate with perceiving,
reasoning, and acting)...can be addressed exclu-
sively in terms of a formal symbolic or algo-
rithmic vocabulary.”[16] Searle named this claim
Strong Artificial Intelligence because it makes the
strong claim that “implemented software by itself,
regardless of the nature of the implementing
medium, is sufficient to guarantee the presence
of mental contents.”[9] This assumption is central
to the cognitive approach to AI. Weak AI, by
contrast, makes the weaker claim that computers
can simulate or mimic human behavior without
actually duplicating the semantic properties of
human mental activity. Engineering approaches
assume Weak AI.

CTM is generally treated not as a philosoph-
ical or logical issue but as an empirical question.
It is typically presented as a materialist theory
of mind, and it has had a powerful influence
on the philosophical and scientific community.
Jerry Fodor described CTM as “the only game
in town.” According to Searle, “to deny that
the brain is computational is to risk losing your
membership in the scientific community.”[9]

Part 3: Computationalism Versus
Naturalism
Argument Against Strong AI

One of the most famous thought ex-
periments relating to Artificial Intelligence is
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John Searle’s Chinese Room thought experiment.
Searle published the thought experiment in re-
sponse to claims in the AI community that the
programs were sufficient for genuine understand-
ing. He imagined himself sitting inside a room,
manually implementing the rules of a Chinese
language program. As questions in Chinese were
passed into the room, Searle would look at the
Chinese symbols, consult a rule book, and then
pass back symbols based on the rules in the
book. To someone outside of the room, it ap-
peared as though the room passes the Turing test.
Searle, however, does not understand one word of
Chinese. This thought experiment is intended to
show that just shuffling symbols according to a
set of rules is insufficient for understanding. The
thought experiment was an illustration of a more
fundamental logical argument called the argument
against Strong AI. This argument, which can be
stated independently of the Chinese room thought
experiment, states that 1) based on the stan-
dard definition of Turing machines, programs are
purely syntactical, 2) minds have mental contents
(i.e., they have semantic content), and 3) “Syntax
by itself is neither constitutive of nor sufficient
for semantics.” Therefore “programs are neither
constitutive of nor sufficient for minds.”

Premise 3 is the key premise. It states that
since programs are defined syntactically (manip-
ulating meaningless symbols), then there is no
way to get from the level of syntax to the level
of semantics. No matter how complex the symbol
manipulation algorithm is, symbols cannot intrin-
sically be ‘about’ anything. They can only derive
their meaning from the programmer or user of
the computer. Searle is making a logical claim
that no matter how much computers progress in
the future, programs are logically not the types
of things that could constitute minds since they
lack any intrinsic semantics.

Two important claims come out of this
analysis. The first is that semantics is not syntax.
The second is that simulation is not duplication.
Just as a computer simulation of a rainstorm will
not get anyone wet, a mere simulation of thinking
is not actual thinking.

Most responses to Searle attack the Chinese
Room thought experiment and fail to address the
logical argument. Searle’s conclusion, however, is

at best inconclusive because it can only addresses
certain versions of CTM, while other variations
remain immune to Searle’s objection.[10] Ex-
ploring these variations of CTM is beyond the
scope of this paper. Searle, however, has another
less well-known objection to CTM that is more
fundamental than the argument against Strong AI.

Naturalism
As mentioned in part 2, theories of mind are

inseparable from the metaphysical commitments
to the nature of reality in general. Searle’s second
objection to CTM is placed against the back-
ground of a prevailing paradigm that underlies
the modern scientific world view. This general
paradigm is called naturalism.

Science tends to proceed on the assumption
of a naturalistic paradigm that assumes that we
live in a mechanical universe where mindless,
meaningless particles in fields of force interact
with each other according to the laws of physics.
To say that matter is meaningless is to say
that it has no intrinsic or ‘built in’ meaning or
purpose. Darwin’s theory of natural selection—a
cornerstone of naturalism—is widely interpreted
as banishing teleology from nature. Green plants,
for example, do not purposefully turn their leaves
towards the sun in order to survive. According
to natural selection, plants survive because they
blindly happen to turn their leaves towards the
sun. When we talk about plants or planets in
purposeful vocabulary, that purpose is not part of
nature. It is in the eye of the beholder.

Observer Independence vs.
Observer-Relativity

There is an important naturalistic distinction
between two classes of facts about reality. The
first class of facts refers to that which exists
independently of our thoughts, beliefs, and at-
titudes. Except for facts relating to the mind
itself, if all conscious beings in the universe dis-
appeared overnight these observer-independent
facts would still exist such as the existence of
atoms. Observer-independent facts are intrinsic or
built-in features of reality.

The second class of facts refers to that
which exists because we believe it to exist. This
class of facts is called observer-relative facts.

8 THREADS



Money is a classic example of observer-relativity.
The existence of little green pieces of paper
with chemical ink stains is observer-independent,
but the fact that the paper counts as money is
observer-relative. If everyone stopped believing
that dollar bills are money, then they would cease
to perform the function of money. Examples of
these two classes of facts are included in table 1.

Observer-independent Observer-relative
protons politics
electrons elections
molecules money
mountains marriage
tectonic plates borders
photosynthesis nation states
planets religious rites

Table 1: Examples of observer-independent vs.
observer-relative facts

So to which class of facts does computation
belong? Does computation name some observer-
independent process, or is it observer-relative?
What about mental contents themselves?

Argument against Cognitivism
Physical science studies observer-

independent features of reality. It is not
concerned with meanings, purposes, or functions
that people assign to those features. Social
science typically deals with observer-relative
phenomena, while psychology is somewhere in
between. Intentionality is observer-independent.
Beliefs, desires, intentions, and conscious
experiences are intrinsic features of biological
entities that have a causal structure sufficient
for consciousness to emerge. Intentionalistic
computation and intrinsic semantic information
introduced in part 1 are intrinsic and therefore
observer-independent. These mental processes
exist intrinsically to some conscious agent
independently of the attitudes and beliefs of
anyone else.

But when it comes to Turing computa-
tion, could there be any observer-independent
fact about a physical system that would make it
computational? Consider the concept of syntax.
What feature of a symbol makes it a symbol?
Could something count as a symbol indepen-
dently of what anyone else thinks or believes? No.

Symbols are purely conventional. Something only
counts as a symbol relative to our interests and
conventions. To say that something can count as
a symbol independently of our beliefs and desires
implies an account of the universe that is more
magical than naturalistic.

If symbols cannot logically be an intrinsic
feature of reality, then Turing computation, which
is defined by symbol processing, cannot be an
intrinsic feature of reality either. The same goes
for information in the syntactic sense. Of course,
for any physical system that we count as a compu-
tational system, there are intrinsic physical states.
The physical brain involves transfers of energy
and computers involve transfers of energy. Aren’t
they similar enough to both cause mental states?
A computational system made from transistors
does have intrinsic properties such as different
voltage levels in transistors and the production
of heat. But as we have seen, the principle of
multiple realizability entails that these features
are completely incidental to the computational
system. The same Turing computation could be
realized in a group of pecking pigeons. The brain
has an intrinsic causal structure sufficient for the
emergence of mental states. But systems that we
engineer to carry out the steps of Turing compu-
tation could not logically have these same mental
states unless they also shared the same causal
properties. This argument is more fundamental
than the argument against Strong AI because it
gets at the heart of the nature of symbols.

Observer-independent Observer-relative
intentionality symbols & syntax
intrinsic semantics derived semantics
intrinsic information syntactic information
intentionalistic computation Turing computation

Table 2: Observer-independence of computational
concepts

Someone might object and say that com-
putation is not really about the syntax but about
the state transitions of a physical system. This is
a deviation from Turing’s original definition of
computation, but the redefinition, however, does
not succeed. Searle writes,

“On this view we don’t really need
0s and 1s; they are just convenient
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shorthand. But...this move is no help.
A physical state of a system is a com-
putational state only relative to the as-
signment to that state of some compu-
tational role, function or interpretation.
The same problem arises without 0s
and 1s because notions such as com-
putation, algorithm, and program do
not name intrinsic physical features of
systems. Computational states are not
discovered within the physics, they are
assigned to the physics.”[9]

Because Turing computation is observer-relative,
any physical system is not just multiply realiz-
able, but universally realizable. Universal realiz-
ability means that for any program whatsoever,
there is some object with sufficient complexity
that admits of some description under which it
is carrying out the steps of that program. Thus,
according to Searle,

“the wall behind me is right now
implementing the Wordstar program,
because there is some pattern of
molecule movements which is isomor-
phic to the formal structure of Wordstar.
But if the wall is implementing Word-
star then if it is a big enough wall it
is implementing any program, including
any program implemented in the brain.”

Therefore everything in the universe is a compu-
tational system. Nothing exists that is not also
a computational system. This theory is called
universal pancomputationalism.

So is the brain a digital computer? In one
sense, the brain is trivially a computer since
anything complex enough can be given a com-
putational interpretation. But in the observer-
independent sense, the brain is not a computer
since nothing is intrinsically a computer except
for conscious minds engaged in intentionalistic
computation. Again, Searle is not making an
empirical scientific claim. He is making a logical
claim:

“The point is not that the claim ‘The
brain is a digital computer’ is false.
Rather it does not get up to the level
of falsehood. It does not have a clear
sense. You will have misunderstood my

account if you think that I am arguing
that it is simply false that the brain
is a digital computer. The question ‘Is
the brain a digital computer?’ is as
ill-defined as the questions ‘Is it an
abacus?’, ‘Is it a book?’ ‘Is it a set of
symbols?’ ‘Is it a set of mathematical
formulae?’”[9]

Searle is often misunderstood as being un-
fairly anthropocentric or biology-centric. To clar-
ify, Searle is not saying that it is logically impos-
sible to build an artificial mind. If it is possible to
build a machine with intrinsic mental states, then
those features would be observer-independent.
They would be caused by the physical structure of
the system. The problem with the computational
approach is not that computers are too machine-
like to cause minds; the problem is that they
are not enough of a machine. An artificially
intelligent machine must have the causal powers
sufficient to guarantee conscious mental states.
Syntax is not sufficient to guarantee mental states
because syntax has no causal powers at all. This
is because syntax does not name a class of
objects that exist independently of our beliefs and
attitudes.

Responses to Searle

One objection to Searle’s analysis is that
more is required for something to count as a
computational system. It is not sufficient that
there are just physical states that can count as the
symbols “1”, “+”, “2”, “=” with a corresponding
state that could count as “3”. What matters is that
there is an isomorphism between the structure
of a program as a whole and the causal struc-
ture of the entire physical system. This is not a
serious objection to Searle because he explicitly
acknowledges that implementing a given program
requires that the implementing medium must be
sufficiently complex to carry out the steps of the
program. The fact that a sufficient causal structure
is required does not undermine the claim that
computation is observer-relative.

John Haugeland argues that Searle’s claim
that syntactical features of a physical system
are observer-relative is falsified since there are
empirical tests for whether some system has those
features.[17] This also misses the point because
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there can be empirical tests for phenemena that
are observer-relative. You could imagine a rigor-
ous empirical test for whether or not an object
was a chair, for example, but whether anything
could count as a chair is still just a matter of
convention, and thus observer-relative.

Implications
Searle’s objection to CTM exposes serious

issues for the cognitive approach to AI in com-
puter science. Trying to create truly intelligent
agents by programming computers is off to a
flawed start. According to Searle, AI researchers
need to first understand how the brain causes con-
sciousness and intentionality. Then they would
need to engineer a machine that would duplicate
those causal processes. Typing into a terminal
cannot create artificial intelligence in the literal
sense. Computer science can help us create clever
fakes that may even become so advanced that they
could pass the Turing test. Such systems, how-
ever, would be zombies; they may behave intelli-
gently but without intentionality. Some thinkers,
such as the futurist Ray Kurzweil, propose im-
mortality through computers. If the CTM were
correct, then we can just upload our minds to
computers so we will live forever in a virtual
reality utopia. If Searle’s analysis of computation
is correct, then these projects cannot succeed.

Although Searle’s argument is directed at
computationalism as it relates to the mind, his ar-
gument is just as applicable to computationalism
in biology and physics. The famous evolution-
ary biologist Richard Dawkins gave an eloquent
example of computationalism applied to biology.
“What lies at the heart of every living thing
is not a fire, not warm breath, not a ‘spark of
life’. . . It is information, words, instructions.
. . if you want to understand life, don’t think
about vibrant, throbbing gels and oozes, think
about information technology.”[18] In physics,
John Archibald Wheeler, who coined the phrase
“it from bit,” argued that information was primary
giving rise to “every it—every particle, every
field of force, even the spacetime continuum
itself” and that physics will ultimately come to
understand that “all of physics is the language of
information.” According to MIT professor Seth
Lloyd, “Every physical system registers informa-
tion, and just by evolving in time, by doing its

thing, it changes that information, transforms that
information, or, if you like, processes that infor-
mation.” Summarizing these ideas, Gleick wrote,
“The laws of physics are the algorithms. Every
burning star, every silent nebula, every particle
leaving its ghostly trace in a cloud chamber is an
information processor. The universe computes its
own destiny.”[18]

If we are to take these claims in biol-
ogy and physics about information and compu-
tation literally as opposed to metaphorically, then
Searle’s argument presents significant philosoph-
ical issues. Computational models in psychology,
biology or physics can be extremely useful in
understanding the phenomena studied in those
fields. Within a naturalist scientific paradigm,
however, conflating natural processes with Turing
computation is to confuse the reality with the
model. For most problems in computer science,
these problems are not an issue. Computational-
ism is irrelevant to the project of building a self-
driving car, for instance. These issues are only
relevant if people believe that computation has
some psychological or metaphysical significance.

Conclusion
The story of computationalism begins with

Leibniz’s dream that eventually led to Turing’s
original thought experiment. Turing machines
have inspired many important theories in com-
puter science and the philosophy of mind. These
ideas, combined with information theory, were
adopted in biology and physics. Searle’s critique
shows that ‘computation’ and ‘information’ are
not intrinsic features of reality as these concepts
are fundamentally observer-relative. This objec-
tion ultimately rests on a naturalistic paradigm
that is widely assumed in modern science. If natu-
ralism is correct, then Searle’s critique of compu-
tationalism is ultimately unanswerable given how
computation has traditionally been defined. This
should at least motivate Searle’s naturalistic de-
tractors to more closely examine our default sci-
entific paradigms and definitions of computation.
Perhaps this tension will inspire new paradigms
that go beyond naturalism and computationalism.
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A Framework for Intelligence
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Abstract—There are various measures of intelligence that exist, but no framework has been
constructed to compare or unite these frameworks. In this paper, such general framework for
understanding how to measure intelligence is proposed. The basic foundational concepts of
Function, Choice, Structure, and Value Framework are discussed, along with some of their
conceptual historical heritage.

INTELLIGENCE has many definitions. One of
my favorite quotes about it is that “[T]here seem
to be almost as many definitions of intelligence
as there [are] experts asked to define it“ (from
R. L. Gregory as cited in [1]). However, if we
extend our view to ask the question “How might
we measure if an action is an intelligent one?”,
we might be able to use the resulting insights
to guide research toward the much more studied
question of what conceptual mechanisms cause
such intelligent actions to be taken.

By combining over 70 definitions of Intel-
ligence from multiple resources including psy-
chologists and AI researchers, Marcus Hutter
and Shane Legg concluded intelligence to be “[a
measure of] an agent’s ability to achieve goals in
a wide range of environments.” [1]. They note that
common features included in other definitions
“such as the ability to learn and adapt, or to
understand, are implicit in the above definition
as these capacities enable an agent to succeed in
a wide range of environments” [1]. They later
formalized this definition mathematically [2], and
subsequently it was expanded upon by Ben Go-
ertzel in an effort to mathematically characterize
real world general intelligence by generalizing
some of the functions and techniques they used
[3]. All of their efforts were characterized in the
framework of Reinforcement Learning, with their
Agents exposed to an environment wherein they
could take actions and receive rewards.

In this paper, we will create a more general-

ized framework than they used, for the purpose
of allowing for further research on understand-
ing intelligence that can be generalized to more
domains beyond Reinforcement Learning (like
those of optimal control, neuroscience, traditional
machine learning, or dynamics to name a few).
This will encapsulate the Reinforcement Learning
ideas that were studied by Hutter and Goertzel
but will also apply to a more general set of ideas
where rewards may not be explicitly defined, or
the structure and functions available to agents and
their environments are not fixed.

CONCEPTS
There are three major concepts which we will

explore for the intent of understanding intelli-
gence. These concepts are those of Function,
Choice, and Structure.

We will explore these ideas by using three
concrete running examples that will exemplify
how these pieces fit together under various con-
texts, and throughout the text, other side examples
will be used as well.

The first example we will explore is that of
the Turing Machine, in which the set-up is a
Turing Machine consisting of a head that can
read, write and maintain state, a tape upon which
the head can read and write symbols, and the key
component of the set of quintuples represented by
a Turing table that serve as “instructions” for the
Turing Machine, as defined by Turing when he
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created the conceptual idea as a Masters student
for the purpose of proving the uncomputability of
the decision problem [4] .

The second example is a deep reinforcement
learning (RL) agent seeking to play a set of Atari
games (whose possible actions include moving a
joystick left, right, up, and down, and pressing
a button), and is implemented with an end to
end neural network architecture. Such was first
achieved in 2013 by a variant of a deep Q-
learning algorithm [5], and the test of creating
control agents to play Atari games has continued
as a fruitful benchmark up till the present day.

The third example is that of a fictitious human
named John Doe who is experiencing an ethi-
cal predicament. John is experiencing the trolley
problem, where he finds himself in front of a train
yard lever which controls the tracks upon which
a train is heading toward three people who are
tied up and unable to move, but if the lever were
pulled, the train would change to a side track and
hit a single individual who is standing on that
side track [6].

The selection of these three examples was
chosen so as to give breadth to the scenarios that
can be covered by understanding the framework
which is given in this paper. Of particular interest
to note is that the Turing Machine example is in
itself very broad, and can be assumed to represent
many different things, such as might appear in
standard computation, or in many machine learn-
ing scenarios.

For example, the Turing Machine may be
programmed to solve a clustering or regression
problem, where the initial state of the symbols
on the tape represent particular data points to be
computed on, and the Turing table instructions are
such that a particular algorithm will be employed
(such as single linkage clustering or logistic re-
gression) and the respective “answers” (clusters
or an equation) will be the result.

We will explore the concepts of function,
choice, and structure using these three examples
as practical motivation, and then we will explore
how together these concepts will allow us to
understand a more general framework for intel-
ligence. For each concept, we will delve into the
hierarchical nature of the ideas it represents.

FUNCTION

ACTIONS
First, we explore the concept of the Function

of a component, element, or process, or generally
speaking, any “thing”. The driving question that
is answered by exploring this concept is “How?”,
meaning “How does it happen?”. At its most “sur-
face level”, the function of a “thing” is equivalent
to what Actions it performs, or the effects it may
exhibit due to an Action affecting it.

As a real world example, consider that the
Action often completed with a toaster is to toast
bread. Therefore, what makes toast come out of
the toaster when bread is put in: how does that
happen? By the Action of the toaster toasting the
bread! The Action taken by the shoe of a runner
is to take the impact of the foot on the ground
and disperse it and soften it such that the runner
feels more comfortable.

This pattern continues. We might say that
Action is exemplified in the head of a Turing
Machine reading or writing of a symbol. Action
is taken when the RL Agent sends a signal to
press the button causing the onscreen character to
throw a punch. For John Doe, the processing and
thinking through of possible outcomes of pulling
a lever also is an Action.

Thus, an Action can be defined as a process of
any finite duration that updates the system being
observed (updating either the physical structure of
the agent or the environment). Indeed, any change
to the state of the system could be described as
the occurrence of some Action, as would the lack
of any change.

In the last example with John Doe, the Ac-
tion may have been imperceptible to the outside
world, but it is still an Action in our stipulative
definition, as would be the Action of waiting for
something to happen like the train to arrive, or
waiting for a signal such as a phone call to occur.
These Actions of waiting can be thought of as
maintaining some (likely non-equilibrium) steady
state dynamics within the agent. However, using
the ”update function” of making no change, such
as if our agent were a rock sitting on the ground,
would also be an Action. If the rock were rolling
down a hill, the Action it takes is that of following
the path given it by the curvature of mound on
which it rolls.
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MECHANISMS

If we insist upon knowing a better explanation
for how our toaster toasts bread, we may again
ask the question “How does this happen?” When
we ask “how”, we are looking to find the under-
standing of the process in question in terms of the
Mechanisms that drive it. We want to see what is
driving the states progression through time.

For instance, when asking how a particular
line of code is executed in a modern computer
program, we seek to understand the processes that
cause the language to compile and execute upon
the variables in memory at that time in the way
it does.

Concerning how our bread becomes toast, we
may come to the more adequate answer of “bread
becomes toast through the chemical reactions of
the amino acids and sugars in bread from the
transfer of electric energy to thermal radiation”.
There’s a lot that could be further unpacked there,
and thus a single Mechanism may comprised of
many sub-Mechanisms.

The Turing Machine reads, writes, and inter-
prets symbols through information manipulation
as dictated by the instructional set of quintuples
(since a Turing Machine is a conceptual construct,
the literal implementation of any of its Actions
is intentionally undefined so as to be as abstract
as possible; thus we look to the definitions of
its processes to understand how the “physical
process occurs”, thus leading us to the answer
of information manipulation, perfectly executed
without fail, and existing in the realm of abstract
thought.)

Our RL agent makes a particular choice
through execution of each of the computational
functions that comprise it: if it is in the process
of training, we may say that the updates to the
weights occur through the application of the back-
propagation algorithm [7]. The back-propagation
algorithm was created in 1986 by Rumelhart,
Hinton, and Williams for the purpose of adjusting
the numerical values of the connections in a neu-
ral network to create new features for learning.
Thus we are consistent with their previous inter-
pretation of the weight adjustment process when
we say that changing network weights forms the
Mechanism whereby the agent ”learns”.

THE LAWS/ BASE TRUTH

In each of the examples we have given, we
have peeled back the metaphorical onion one
layer, looking for the physical (or abstract coun-
terpart in the case of the Turing Machine) Mech-
anism that executes from an Action taken. When
we state that there’s more to be unpacked in the
toast example above, we might wonder exactly
how much more could be unpacked. If those
process explanations have further explanations,
then those explanations might as well, so where is
this line of explanations to end? If a child were
to enjoy this line of learning (about the toaster
for example) longer than a parent feels capable
of answering, the answer eventually becomes “I
don’t know, go ask your Mom/Dad”, or perhaps
for the more subtle caregivers “Modern Science
hasn’t figured that out yet”, or perhaps simply
the word “Physics”. Truly, this last answer may
be the most insightful of all.

In modern times we may have the most elabo-
rate mathematical models of what drives physics,
but these equations do not hold in themselves
the “base truth” of the laws of nature. Even if
they perfectly matched them (which they likely
do not), these equations still only represent these
laws, and do not constitute them in themselves.
Indeed, for any scenario in which we are ob-
serving the physical world (as in the toaster
example or in the example of John Doe) we will
ultimately work down the layers to a point where
the mechanical explanation of what occurs is that
the laws of nature are such that this is what
happens.

Ultimately, it is the laws or base truth physics
that governs what Mechanisms are possible in
our temporal, mortal experience. This is not to
say there is no value in approximating these base
rules to the best of our knowledge, but when we
do so, we are inherently observing a different sce-
nario than the exact one we are trying to model.
This is because in those computational models,
as in with the Turing Machine and with the
Reinforcement Learning Agent, the Base Laws
are as we define them to be (assuming they have
been implemented correctly).

In the case that we were to consider the Turing
Machine only in the mathematically constructed
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realm, it’s Base Laws would simply be the math-
ematical framework in which it was defined, in
which case the internal consistency of the ax-
ioms leading to this framework becomes of great
importance. In the physical world, we need not
worry about the consistency of the laws or base
truth of physics quite as much, because through
empirical evidence we can see they are consistent
enough to at least locally maintain the conscious
experience we enjoy.

CHOICE

ACTION SELECTION

We now move to a discussion on the con-
cept of choice. The main interrogating question
driving this section is “Why?”, which is asked
to understand the more global context in which
a process lies. For example, when asking why
a particular line of code is executed in a com-
puter program, the answer we may seek is that
it executes because it was called from the line
before, or perhaps because it is part of a loop
or function that is executing. From seeing the
multiple levels of what “functions” can represent
from the previous section, we may suppose that
likewise the object this “why” question is directed
to could also apply to many levels of depth.

If a tennis player loses gusto and slows down
before reaching a returned ball bouncing just
out of reach, we may ask her the reason for
her lacking performance. “Why did you slow
down?” Here, she may state “Because I decided
to slow down”. This simple response parallels the
response she may give for “How did you slow
down?” (which question comes from the previous
section on Function) by with her responding
“By slowing down”. In this manner, the question
“How” directs one to delve deeper into the layers
of the onion of Mechanism, and the question
“Why” directs one to broaden understanding from
the higher onion layers of context.

The idea of selecting an Action may be in
some situations very rudimentary: this selection
may not be a “choice” at all in the colloquial
sense if there is but one deterministic option.
Consider the Turing Machine, which makes the
choice to follow it’s instructions because it is
defined to do so (as discussed in the Mechanism

section above), so we may say that the Turing
Machine itself does not really have any “choice”
or “control” at all. In other words, it is determin-
istic, and “selects” the only option available to
it.

In the case of our Atari agent, the choice to
press the button was selected from the space of
all possible Actions that could have been chosen
(left, right, up, down, or button).

For John Doe, if he were to choose to pull the
lever, that would be selected from the space of all
Actions that he could have taken. He could have
also chosen to run away, close his eyes, call for
help, or do anything else that would be possible
given his circumstance and the Base Laws of
physics.

SELECTION POLICIES
The question of “why” leads to an explanation

of the context of a particular Action by illumi-
nating other possible Actions. In this way, we
can “step out” of the Action and see what other
Actions would have been possible to choose.

When in the perspective of this “stepped out”
view, there may be an infinitely large set of
permissible Actions given the Base Laws. This
does not mean that an agent is always able to
assess or model all possible Actions. Indeed, the
agent may even have an internal model about
the Base Laws (or the Mechanisms founded on
them) that is incorrect. (This incorrect model may
lead the agent to select a particular Action and
experience unexpected results.) Therefore, this
“higher”, “stepped out” view of the context an
Action is performed under leads to an understand-
ing of what else could have happened and forms
the foundation of selection policies.

Return to the tennis player. Her “first level”
response to the question of why she slowed down,
“Because I decided to,” can be understood to
mean that she selected the Action of slowing
down. This does not provide us with a “higher”
view of context to see other Action options she
could have chosen. However, she could also re-
spond “Because I was getting tired”. This second
response provides a way to step one layer out
again to the “second level”. It describes the
context from which her Action of “slowing down”
was selected, and simultaneously provides a view
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into the other Actions that would be available in
this context. Knowing that she was in the context
or following the policy of being tired, we then
know what other possible Actions she might have
consequently taken. To think of a few, she could
have instead collapsed, cried, laughed, or abruptly
stopped running.

A quick explanation is necessary to describe
what the term ”policy” means is as it was just
used. In Reinforcement Learning, a policy is a
mathematical strategy or function that an agent
employs in order to select what Action to take.
The idea of iterating policies as a way for learning
was first introduced by Ronald Howard in 1960
as a way to solve Markov Decision Processes
(MDPs)[8]. Though our situation is not one of an
MDP, here similarly, a policy entails a function
for selecting what Actions to choose, as well
as the method for choosing them. Because their
purpose is for selecting which Action to choose,
we call them “Selection Policies”.

Each higher policy layer provides a wider
“view” of why a particular chain of Mechanisms
is used. We will look at a “third layer” of our
Tennis player example to explain why she took
the Action of “slowing down”. This third layer
may reveal she was feeling tired because she had
practiced tennis for many hours. If this were the
case however, then she might have chosen to feel
something other than tired: being tired was only
one of the many Actions she could have chosen
in that context. If she instead had chosen to feel
determined, confident, or satisfied from her many
hours of hard work, each which would have had
in turn its own separate subsequent Mechanisms
and Actions available.

In this way, each higher policy selection level
represents a fixed perspective from which lower
Actions and Mechanisms can be selected. Given
that a particular policy is fixed, such as our tennis
player “feeling tired”, the options of what Actions
she could then take in response, and the method
of her choosing them are fixed. The algorithm
for selecting the Action may be sampling from
a probability distribution over the options, or it
may be a different algorithm (computationally
permissible according to the Base Laws on which
she operates). Either way, due to the fact we
have fixed the policy “feeling tired”, then the

corresponding algorithm of selection pertaining to
that particular policy is also fixed. Each selection
of an Action leads to a new policy to implement
to select the Mechanisms by which it will operate,
but not every selection path needs to have the
same “depth” to reach the Base Law.

BASE CONTROL/FREE WILL

It should be clear that Selection Policies really
are the same “kind of objects” as Mechanisms,
only viewed differently, as will be explained
below. Therefore, when we ask “Why?”, for the
purpose of discovering a Selection Policy for a
particular Action (or process) a, we are in a
sense asking, “What Selection Policy perceives
the Action a as a potential Mechanism?”. There
may be many different Selection Policies that
contain a in their set of possible Actions, and
thus there is not a unique answer to this question.
However, there is a unique policy (and linked
chain of policies up the hierarchy) that an agent is
employing each time that an Action is performed.
Likewise, the Action a can be seen as the Selec-
tion Policy over the set of potential Mechanisms
that would realize it. Thus, the concepts of Selec-
tion Policy and Mechanisms, or those of Function
and Choice, are two descriptions for the same
set of “explanations”. Viewed from the Function
perspective, these “explanations” are understood
as Mechanisms, and viewed from the Choice
perspective, these “explanations” are understood
as Selection Policies.

With this understanding, we can see that
something is deterministic if it is bounded above
in the “policy” direction of explanations, meaning
that there is an explanation for which no higher
description of “Why” can be given other than
that the policy is fixed as such. On the other
hand, theoretical constructs of formal abstraction
are “created universes” that exist by bounding all
explanations below in the “Mechanism” direction
of formulation, meaning that there is a set of
Mechanisms for which no lower description of
“How” can be given, other than to say that the
rules are fixed as such.

Our running example of the Turing Machine is
an example of the latter, where the Mechanisms
are bounded below. The rules and axioms have
been defined for what the Turing Machine is and,
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and how it operates, and as long as those rules
serve as the base law for what the Turing Machine
does, any number of explanations for “Why” our
machine was implemented to act in a particular
manner may be given. See Figure 1 for a visual
on how this works.

As mentioned in the section on Action Selec-
tion, the Turing Machine follows a deterministic
process. Therefore, the question of “Why did
the Turing Machine make that choice” is trivial:
”The Turing Machine is deterministic, so it made
that choice because that’s what the laws state is
does in the context it is in.” A more meaningful
answer may be given if we look not to the Turing
Machine, but rather to the human creator of the
Turing Table that controls it. They may be able
to give a reason for why they made the choice
to endow the Turing Machine with the initial
conditions and set of instructions it was given.
However, if we continue to press the question
as to ”why” that reason needed to be filled,
and continue further and further up the chain of
”whys”, our human must either come to some last
policy, or continue forever higher up an infinite
stack.

If we assume that the human in question is not
deterministic, and thus is not driven by some fixed
”last policy”, we will arrive at the philosophical
impasse of either requiring that there be “turtles
all the way up”, or we arrive at a special kind
of policy from which neither determinism nor
a fixed method of sampling can computation-
ally describe how the choice from that policy
is made. (This “final Selection Policy” might be
understood theologically as the soul, spirit, con-
sciousness, or essence of the individual.) Either
way, the empirical result of an infinite regress of
Selection Policies or an ultimate “final Selection
Policy” (which we call the Base Control) would
functionally appear the same. The attribute that
both the infinite stack and Base Control would
display of not being either deterministic, nor even
predictable, we define as “Free Will”.

As far as we can directly observe, it is the
human coder who makes the decisions concerning
why a particular Reinforcement Learning setup
and policy is implemented, or why a particu-
lar update rule is employed to train the agent.
“Meta-learning” may incorporate an extra layer

Figure 1. The Choice/Function Unification Diagram

of policy freedom, but it is still ultimately the
Free Will of the coder being applied in timing of
initializing the random seed that determines what
the outcome of the training would be (unless it
were stochastic, in which case, even those com-
ponents are still determined not through free will
but through deterministic mathematical functions)
that would determine the final state of the trained
agent.

However, this idea of meta learning has been
used in practice, perhaps more notably in the
paper on Agent57, where Deep Mind trained an
Atari agent to use a meta controller to decide
when to exploit known dynamics and when to
explore. There, the RL agent was given two
layers of policy control: the higher or outer layer
so that it could control the use of its explo-
ration/exploitation policies, thereby affecting the
lower or inner layer to select which Action it
should take. [9].

Of course, with the example of John Doe or
with us, the question of whether we as humans are
at the “base control” of our own Actions has been
in philosophical dispute for centuries. What can
be hopefully said with little disagreement is that
we can observe our own behavior and determine
that we perceive ourselves as having Free Will.
Therefore, we may (reasonably, or egocentrically,
depending on your perspective) declare our con-
sciousness to either be the base source of control,
or the highest rung on the ladder of policy driven
control that we will account for, thus allowing any
potential higher levels of control to be summed
up in ourselves that we might have full claim over
the phenotype of “Agents with Free Will”.

On the other hand, a Reinforcement Learning
agent is of course programmed to have some
fixed upper policy for updating it’s policies, as
is determined by it’s hard-coded update method.
However, the agent can also be evaluated “as if”
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it had Free Will in it’s own right for practical
purposes by treating the fixed policy “as if” it
were a Base Control with Free Will.

STRUCTURE

OBJECT OF CONTROL

The next concept we will cover is that of
Structure, with the purpose of distinguishing the
structure and dynamics (or motion) of our agents
in question in conjunction with and compared to
their environments.

For the concept of structure, the driving ques-
tion we ask is “What?”, meaning “What is acting
or being acted upon?” We can use the concepts of
Function and Choice as discussed above to phrase
this question slightly more technically: “What are
the dynamics of the system resulting from the
Base Control and Base Laws?”

Let us call the parts of the system the “com-
ponents” of the system. There will be a subset
of the components that comprise the agent, and
the rest will comprise the agent’s environment
(which may include other agents with Free Will,
but they are still part of the first agent’s ”envi-
ronment”). We define the Object of Control to
be the components of the system that are directly
controlled by the agent- they are likely a subset of
the components that make up the Agent itself. It
is through the Object of Control that the Base
Control (or “spirit”) of the Agent can interact
with the Mechanisms and Functions that causally
couple it to the indirectly controlled components
that together with the Object of Control make up
the entirety of the Agent.

An important point to emphasize here is that
there is no conceptual boundary as to what inher-
ently makes a particular subset of the components
in a system an ”agent” verses what makes that set
of components to be a part of an environment.
This means that it is completely dependent on
the frame of analysis as to which set of compo-
nents (connected or not) can be viewed of as a
”single agent”. In this mindset, the environment
can be thought of as being completely composed
of agents, some of which are deterministic, and
others which have Base Control. Such can be
seen in the example given in the Actions section
of this paper, where even a rock can be seen

as taking the Action of updating its environment
through its deterministic choice of not moving, or
by following a path down a hill as determined by
the Base Laws that we observe as gravity.

If we choose to focus on a particular agent
(subset of the system) which does not have Free
Will, then there is some highest level policy
which is fixed and dictates what the dynamics of
the Agent will be. These dynamics are then only
dependent on the initial condition of the entire
system, and the dynamics of the environment
throughout time.

This is the case of the Turing Machine. Con-
sider the agent to be the read/write head and
Turing table, and consider the tape as the en-
vironment in which the agent is operating. In
this situation, given the Turing table and tape,
the Actions of the head are fixed; it’s dynamics
being completely dictated by the state it is in and
its environment.

Indeed, even if we imagined that during the
middle of the head’s computation, we come in
as an outside agent (with Free Will) and change
some of the symbols on the tape, then given that
we did this, the Turing Machine head’s operations
are still deterministically fixed assuming no other
alterations to the tape were made.

These controlled dynamics can be very robust.
For example, an agent might have “internal mem-
ory” if it can use it’s Base Control to drive a
function that can dynamically take information
(external or internal to the agent) to compress or
encode it, a function to maintain it over time,
and another function to take that compressed or
encoded information and utilize it in a meaningful
manner (either by uncompressing it, or using its
raw uncompressed information as part of another
Function).

We might interpret the deep RL agent as
doing this when it captures its experiences of
various Atari games into memory, and uses these
experiences to update it’s policy for future action.
An example of this principle in practice can be
seen in Agent57 [9], as in many other RL agents.

A separate way for tracking memory may be
external to the agent, not by changing its inner
dynamics and Function, but rather creating an
external memory in the environment, like a for-
getful individual writing down notes with pencil
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and paper. These Actions are made easier because
of the stagnant nature in our universe of objects
that lack Free Will, due to the Base Laws that
we experience. That is to say that it is easier to
write with a paper and pencil due to the fact that
Newtons first law of motion will keep papers and
pencils from moving unless we are moving them.

In the case where the agent in question does
have Free Will, it is necessary to note that the
Base Laws must determine both the type of
interaction between components of the system,
and also what kind of interaction is feasible
between the Base Control and the system as
well. This means the possible ways the system
might progress are dictated by the Base Laws
and Base Control of our agent. If these Base
Control/System interaction laws are in place as
a part of the Base Laws, then our agent is free
to act as he will, given the constraints of what
dynamics are possible with the Base Laws.

HIERARCHICAL STRUCTURE

In the “Thousand Brains Theory of Intelli-
gence”, Jeff Hawkins and Christy Maver present
a theory on how the human neocortex works,
suggesting that the brain builds many models of
every object. In the theory, each model comes
from a cortical column of the human brain. (A
cortical column is a neuroscientific construct that
consists of a locally adjacent group of neurons
in the human cortex.) This can be understood
in our framework to mean that our brain is
composed of many agents (each consisting of
many neuronal components), each modeling the
world we experience [10].

Karl Friston has done similar work in apply-
ing the theory of Markov Blankets to the brain in
such a way that separates its dynamics in a hier-
archical manner [11]. Indeed, he has done work
that has shown that Markov blankets are useful
in talking about the causal structure inherent in
dynamical systems on multiple ”levels” of size,
ranging from molecules to ecosystems [12]. (A
Markov Blanket can be understood to be the set of
components that separate any defined agent from
their environment).

We build off these principles by further inves-
tigating the hierarchical nature of the structures
that exist in our agents and the environment, and

how they relate to the Functions defined above.
In the case of John Doe, he is as you or I am:
His body has a complex hierarchical structure (or
Nested Structure) of organs, cells in the organs,
organelles in the cells, and molecules and atoms
comprising it all. However, he only has Free Will
over the outermost grouping- the body.

This is not to say that the cells may not be
agents with Free Will in the system as well, also
with the capability of having some amount of
control over the dynamics of what happen, the
causal dependencies being separated by a Markov
Blanket. The same applies for any layer of the
hierarchical structure for that matter: the atoms,
molecules, organs, or environment each may have
free will or Base Control of their own, with the
interactions of the way their dynamics driven by
the Base Laws.

It may be possible to conditionally separate
the system into a Hierarchical Structure many
times over with Markov Blankets. At every level
that this is possible, it is not necessary that the
resulting collection of components really does
have a Free Willed agent of it’s own that acts on
it through the Object of Control. For example,
it is thus possible that John has an Object of
Control, but that each of the separate molecules
and proteins that help to build the structure that
is his body do not.

We also note that the agent may take in
components from the environment to itself, and
may lose components to the environment. For
example, we may eat broccoli and have those
atoms become a part of what is on the inside of
our Markov Blanket. Likewise we may cut our
hair and clip our nails, and have them no longer
be a part of what is on or inside our Markov
Blanket.

AGENCY
The sociological concept of agency is the

capacity for individuals to act with free will. We
parallel this idea here and define Agency to be the
described ability to utilize Base Control to direct
the dynamics of the system via Actions chosen
with Free Will.

From this, we would say that if we assume
John has an Object of Control and Free Will, then
because he has a body that is capable of following
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the dynamics the Functions and Base Laws allow
it to, he thus has Agency.

If we ask whether the RL Atari agent has
agency, again, it depends on how we chose to
analyze it. If we treat it from the perspective that
states that the highest policy is fixed, then we can
quickly determine there is no Agency involved.
However, if we treat it in the (more practical)
framework “as if” the agent has Free Will (as was
done in the section on Base Control/Free Will),
then we discover that our RL agent does have
an Object of Control. In this case, the Object
of Control is any part of Neural Network that
can be updated during training, as well as the
controls that the agent uses to interact with the
Atari games. It is only through these two sets
of components that our “Agent” can update itself
(while being trained) and interact with the uni-
verse (of Atari games). After the agent is trained,
and the weights are fixed, the Object of Control
then diminishes to be only the joystick and button
controls that the agent has to interact with it’s
world.

A thought experiment posed by Anatoly Dne-
prov in 1961 Russian Journal asks the philoso-
phy of mind question what would happen if a
large number of individuals were all asked to
simulate the Actions of one neuron in a brain,
were given the rules on how to do so, and the
means to communicate in order to simulate the
passing neuronal signals [13]. Would the resulting
arrangement have a mind or consciousness (or
Agency) in the same way we do?

Using the definition of Agency given above,
the answer is no. This is due to the fact that each
individual is making the “choice” to participate.
Thus, there is no Agency in this scenario that
has control over the dynamics of the group.
Although the rules given to the participants may
have given instructions on how to handle people
deciding not to participate (which might be akin
to a neuron in the brain no longer working),
these instructions are assumed to be static, not
dynamic, and therefore they represent an ultimate
highest policy, or in other words, the simulation
is deterministic (as described in the section on
Base Control/Free Will).

FRAMEWORK FOR INTELLIGENCE
Now that we have covered the principles

of Function, Choice, and Structure, we will in-
vestigate how these combine together under a
larger framework of intelligence. It is key to
note that here, while we will provide a method
for measuring intelligence under any given Value
Framework (as will be defined), we do not make
an attempt to determine which Value Framework
is the best.

DYNAMIC STATE PROGRESSION GRAPH

The first key to combine these principles
together is that of Dynamic State Progression.
This is the idea (that should seem familiar by
this point) that given an initial condition for
the system (agent and environment), and given
the Base Laws that govern the dynamics of the
system, there is a set of states that the initial
system can transition into. For any of those states
(where state means both structural organization of
components and Mechanisms and policies being
employed), there are another set of states that
could be transitioned into (given again that the
Base Laws are being followed).

Thus, the Dynamic State Progression Graph
comprises all possible paths of the agent, given
it’s initial starting conditions. (This principle is
built off the idea of State Graphs presented by
Steven Wolfram in his ”Physics Project” effort to
find a fundamental theory of physics [14].)

If the Agent has Free Will and Base Control in
influencing the dynamics of the Object of Control
(in other words, if the agent has Agency), then
the agent is the only thing that keeps the system
as a whole from being deterministic unless the
Base Laws have some stochastic elements to them
or there are other agents with Free Will in the
environment. If there are other Agents or the Base
Laws themselves are not deterministic, then the
Dynamic State Progression Graph is much bigger,
but it still exists.

VALUE FRAMEWORK

Once we have the agent, and we have the
system which comprises both the agent and the
environment in which it resides, the framework
we will define for this agent will provide a way to
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evaluate how intelligent the agent is. We will thus
be constructing a Value Framework with respect
to which we can measure the “intelligence” of
the agent. This ”value” will only be defined for
the ending state of the agent, but it follows much
in the same way as standard dynamic program-
ming problems are solved to optimize the final
reward or minimize cost as presented by Richard
Bellman in 1954[15].

Therefore, an agent’s intelligence as we define
it here is dependent on what framework is being
used to evaluate it. These Frameworks can be
thought of as perspectives or points of view.

Given the fact that the system can progress
to and toward different states depending on the
choices made by the agent, there are many dif-
ferent terminal states and infinite horizons to-
ward which the agent and its surroundings might
progress. In selecting a Value Framework used for
evaluating the agent given its initial surroundings
and configuration, we do so by deciding the
relative preference of those terminal states and
infinite horizons (where infinite horizons refers
to dynamic systems that is not finite in duration,
and which the framework does not “make finite”
in duration).

For example, suppose the agent is a robber
and the environment is their world. If we choose
to evaluate the robber from the Value Framework
as might be seen from the robber’s perspective,
the ideal end states might consist of successfully
robbing the bank and escaping without getting
caught, and the least desirable state would be that
the robber gets injured, caught, or killed.

A Value Framework that might represent the
perspective of society would likely have a dif-
ferent set of ideal final scenarios. From society’s
perspective, the most desirable outcome would be
one in which the attempted thief is quickly and
safely recognized and captured, and the least de-
sirable outcomes would include the thief getting
away with lots of money and wrecking havoc.

It is important to note that once a framework
is decided upon it remains fixed. So, if we eval-
uate the previous scenario from the perspective
of the robber, we might do so by choosing a
framework that represents the preferences of the
robber before beginning to rob the bank. Using
this framework, if partway through, the robber

has a mid-robbing-life-crisis and decides it is a
bad idea to rob the bank and instead decides to
leave the bank without robbing it, the fact that his
mentality has shifted midway through the process
does not change the fact that his initial mindset
(and thus the framework being used here) would
have considered him leaving the bank without
money a bad idea.

In a similar manner, we also note that because
the Agent is completely separate from the Value
Framework it is being evaluated upon, the relative
ordering of all the potential terminal states and
infinite horizons need not make any logical sense
to the agent.

Thus, to evaluate how intelligent an agent is
within a particular Framework, we simply note
the value given to the terminal state or infinite
Horizon at which the Agent arrives. That value
represents the intelligence of the agent with re-
spect to that framework.

If a system as a whole is deterministic, this
simply means that the state of the system at the
final time is completely determined by the state
of the system at the initial time. Therefore, when
placed in a Value Framework, the system can only
follow one path, so the final state reached has its
value completely defined by the Framework being
used.

APPROXIMATION
Due to the large structure of these frame-

works, we will rarely be able to compute to the
whole thing in practice, so the best we can do
is approximate. It may also be helpful to treat
deterministic agents “as if” they had free will,
as was done in the section on Base Control/Free
Will. In practice with these “as if they had
Agency Agents”, it may be necessary to test the
agent multiple times on a particular framework
and average the results.

Even if an agent with Free Will could be per-
fectly measured according to a Value Framework
as described, it would not actually be indicative
of how that agent would necessarily perform in
the future, given the fact that an agent with Free
Will need not follow the same policy every time,
no matter how it has done in historical context.

Finally, we note that although an agent may
”perform well” with respect to one framework,
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this does not mean that the agent provided has
intelligence in a general sense. To quote Ben Go-
ertzel, ”intelligence is achieving complex goals in
complex environments” [3]. Thus, we may create
multiple ”Template Frameworks” with which to
evaluate a single agent, by creating a set of ini-
tial conditions and terminal state rankings within
which to place our agent. We can then use the
combined results as a measure of the agents
”general intelligence”, although again, it is still
with respect to the set of template frameworks
that were employed.

CONCLUSION
There are many different factors at interplay

that lead to intelligence. In this paper, we have
identified four of them.

Function comprises any Action or interaction
that is possible in the system given. Choice is un-
derstood as the reasoning or control that leads to
the sequence of functions or rules that are applied
to the agent. Structure defines the nature physical
system or universe in which the Agent operates,
and is closely coupled with the previous two.
This is because Base Functions (or Base Laws)
define what kind of interactions are possible in
the system, and Choice, or the Base Control,
determine the sequence of Actions implemented
that results in the particular subset and ordering of
interactions used. Finally, the concept of a Value
Framework defines the perspective on which an
agent or system is judged to be intelligent.

These four concepts provide an overarching
framework with which one can understand intel-
ligence in any system with temporal dynamics.
They were selected to be exhaustive, meaning that
there are no aspects of an agent within a system
that cannot be framed in this context. However,
this paper does not offer rigorous proof that these
concepts are indeed exhaustive in this manner.
Future work may include seeking to prove the
completeness of these concepts, and implement-
ing the principles of the overall Framework of
Intelligence in a practical manner.
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Reinforcement Learning: An
Approach to Intelligent
Decision Making

Jamison Moody
Brigham Young University

Abstract—The ability to make effective decisions in everyday life is part of what makes us
intelligent as humans. In the quest for artificial intelligence, this is one of the important skills we
have tried to mimic. Reinforcement learning is an approach to decision making in computers that
is loosely based on how reinforcing behaviors work in psychology. In this paper, we define
reinforcement learning and explore the foundational ideas that started this paradigm. We also
explore the equations, theorems, and common problems that are prevalent in the field of
reinforcement learning.

HOW DO WE NAVIGATE our environment to
make effective decisions? The answer to this
question becomes less and less clear as environ-
ments get more complex and complicated. This
ability is important in every scenario of daily
life. For example, when the alarm clock rings in
the morning, we make the decision to get out of
bed and get ready for the day. Later on, we may
decide to stop whatever we are doing to grab a
bite to eat. Do we stop at a new restaurant that
looks appealing or do we go to one we know we
like? Later on, do we decide to go to a movie
with a group of friends or spend time on a work
project we are putting off?

In order to make these decisions, we have
to determine the value of the states we may
end up in after we make the decisions. There
is immediate reward (socializing with friends) or
long term reward (finishing the work project). Is
it worth it to try new food and find something new
we really like or just eat what we already know
we like (exploration vs. exploitation)? It is highly
likely that our model of the world is biased,
and not quite accurate. How do we update our

Figure 1. Reinforcement learning in a fully-
observable environment. The agent takes an action
based on the state of the environment. Behaviors are
reinforced through rewards. Accessed from [1].
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Figure 2. Edward Lee Thorndike, American psychol-
ogist, developed the ”Law of Effect”, which describes
how animals learn through trial and error. This idea
went on to influence reinforcement learning in com-
puter science. Accessed from [3].

perceived value of the states in our environment
over time?

Reinforcement learning methods can help us
find solutions in different scenarios similar to
those mentioned above. It is a type of machine
learning; in other words, programming a com-
puter to learn how to do a task without explic-
itly telling it what to do. However reinforce-
ment learning is different from other types of
machine learning like supervised learning and
unsupervised learning. Supervised learning in-
volves learning generalizations from data with
labels, and unsupervised learning learns patterns
from unlabeled data. In contrast, reinforcement
learning learns from experience to achieve some
type of goal. Richard Sutton and Andrew Barto
explain, “Of all the forms of machine learning,
reinforcement learning is the closest to the kind
of learning that humans and other animals do,
and many of the core algorithms of reinforcement
learning were originally inspired by biological
learning systems” [2] (See Section 1.1).

So what are the essential parts of a rein-
forcement learning framework? In reinforcement

learning there is the agent, which makes deci-
sions, a policy (defines how the agent behaves), a
reward signal, a value function, and sometimes
a model of the environment. A reinforcement
learning agent seeks to maximize the value of the
states it visits over time. If we understand how
our environment transitions from state to state,
we can use this model to plan ahead and explore
the value of future states. Reward looks at the
immediate utility from entering a state. Value is
different than a reward signal because it is a long
term look at all the rewards gained from a state in
the future [2] (See Section 1.3). Refer to Figure 1
for a visual depiction of reward, state, and action.

The goal of this paper is not necessarily to
talk about the latest and greatest achievements
in reinforcement learning, because those can be
found in current research papers on this topic. In-
stead, we will explore the connections, the ideas,
and the people that gave rise to reinforcement
learning. We start with the early beginnings and
background of reinforcement learning as well as
key definitions that will be helpful to the reader.
We then talk about approaches to the problem of
finding the value of a state and then learning a
policy directly (as well as a combination of both
of these so-called actor-critic methods). Next, we
will introduce two difficult problems in reinforce-
ment learning: exploration vs. exploitation trade-
off and the credit assignment problem. We do not
explore solutions to these problems; the goal is to
make the reader aware of these issues which are
found in a wide variety of reinforcement learning
problems.

Early Beginnings and Background
There are multiple ideas that combine to cre-

ate modern reinforcement learning as we see it
today. In this section we will briefly talk about
two threads that influenced the main ideas dis-
cussed later. These are trial and error learning and
Markov Decision Processes. We will then define
important terms such as model-free, model-based,
online, and offline in the context of reinforcement
learning.

Since the conception of artificial intelligence,
researchers have tried to have tried to mimic
the results found in animal psychology [2] (See
Section 1.7). For instance, many animals learn by
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trial and error. Consider a dog learning how to
do a trick, like rolling over. It might take a while
for the dog to complete the action the first time,
but after the dog rolls over the trainer will likely
give the dog a treat. The treat is a stimulus that
reinforces the dog’s behavior.

In 1911, Edward Thorndike, an American psy-
chologist, published Animal Intelligence which
proposed that animals learned not by reasoning
or imitation, but through the reinforcing of good
behaviors through trial and error. He came up
with this conclusion after experiments on cats
and dogs and later on fish and monkeys [4]. He
developed what is now known as the ”Law of
Effect” which says that if a behavior is followed
by satisfaction (or a reward), that behavior is more
likely to occur. However, if a behavior is followed
by discomfort, the connections to that behavior
will be weakened [5]. Thus by trial and error,
animals learn to behave in a way that will bring
pleasure instead of pain.

Another great thinker who contributed to the
idea of trial and error learning was Alan Turing.
Turning was a brilliant mathematician who helped
break Nazi ciphers during World War 2. In a
seminal paper in 1936 he proved that mathematics
will always have undecidable propositions. He
is regarded for developing important underlying
research in computer science and artificial in-
telligence [6]. In a 1948 paper, Alan proposed
a machine that had a pleasure-pain design that
follows the ”Law of Effect.” In this system,
random choices for missing data are made if we
do not know what to do in a certain situation.
These temporary entries are used until a stimulus
is received, and in the case of a pain stimulus,
all tentative entries are cancelled. However, if a
pleasure stimulus arrives the tentative entries are
made permanent [7].

With a basis for solving the problems based
in psychology, we need a framework to set up
our decision making problem. This is typically
done with the Markov Decision Process (MDP).
Ron Howard is an important contributor in this
area (and the dynamic programming methods
discussed later). When Howard was at MIT he
went to the physics department and just happened
to drop in on a talk by Stanislaw Ulam, a physicist
who worked on the Manhattan Project. Ulam

talked about a framework called Markov Pro-
cesses, which Howard found interesting. Howard
ended up doing graduate research on the topic and
contributed significantly to the research on MDPs
which are a specific type of Markov Process [8].

In his book [9] (See Chapter 1), Howard gives
the example of a frog in a lily pond as a way to
describe a Markov Process. As time goes by, the
frog jumps from one lily pad to another. The state
of the system is the number of the pad occupied
by the frog, the state transition is the frog’s leap.

If we add rewards and decisions into this
analogy, we have a Markov Decision Process
(MDP). Defined by Professor David Silver [10]
(See Lecture 2), a Markov Decision Process is a
tuple 〈S,A,P,R, γ〉, where

• S is a set of states
• A is a set of actions
• P is a state transition probability matrix,
Pass′ = P[St+1 = s′|St = s,At = a]

• R is a reward function, Ra
s = E[Rt+1|St =

s,At = a]
• γ is a discount factor γ ∈ [0, 1]

States in a Markov Decision Process have
what is called the Markov Property:

P[St+1|St] = P[St+1|S1, ..., St]. (1)

In other words, the current state captures all
the information from the history of the states we
have visited. Here the states are fully observable.
For the sake of simplicity, we will not explore
how to learn in partially observable states, even
though these are more similar to many real world
scenarios. What is interesting about Markov De-
cision Processes is that they can define almost any
fully observable system that an agent can interact
with. For example, they can be used for zero-sum
games where we model the opponent’s actions in
our transition probability matrix.

These two key ideas play an integral role in
the reinforcement learning methods talked about
in the next sections. Trial and error learning can
be thought of as the “reinforcement” in reinforce-
ment learning. Many of the learning methods
discussed later follow the idea of reinforcing
behaviors that give a high return on reward.
Markov Decision Processes are important because
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they form the common framework for most rein-
forcement learning problems. In later sections the
reader may want to refer to the definition of an
MDP described above to understand each part of
the equations presented.

Before we move to the next section we briefly
define a few more terms that will be of use to the
reader. These include model-free vs. model-based
methods and online vs. offline reinforcement
learning. Reinforcement learning algorithms can
typically be divided into model-free and model-
based approaches. Model-free methods seek to
learn how to interact in an environment without
a model of the environment. One example of this
is a drone flying in weather patterns it cannot
predict. Model-based methods on the other hand
seek to learn (or are given) a model of the envi-
ronment as they learn how to act [11]. A computer
program learning how to play the game of chess
(after it has learned the rules) would be an ex-
ample of this. Typically model-free methods have
the ability to be applied to more realistic scenarios
where we don’t have a model of the environment.
One advantage of model-based methods however,
is the ability to ”look ahead” and predict what will
happen in the future. Many of the value-based
methods mentioned later (dynamic programming
and monte-carlo learning) require a model of the
environment. Some temporal difference methods
(like Q-learning) as well as many policy-gradient
approaches are not constrained to have model.

Next, we will denote the difference between
online and offline reinforcement learning. Many
of the reinforcement learning agents that have
been implemented in the real world are online
agents. They observe the environment state and
make a decision, observing the consequences of
their choices. They can then adapt and respond
to the feedback they receive the reward stimulus.
This is what most of the methods in this paper
are applied to. Offline (or batch) reinforcement
learning seeks to take offline data (sequences of
actions and states from another agent) and learn a
policy based on that information. This is a more
difficult problem because there is no exploration
for an offline reinforcement learning agent; it
has to infer how to act based on another agent’s
experience [12].

Figure 3. The Unified View of Reinforcement Learn-
ing. Here the ideas of temporal difference learning,
Monte Carlo learning, and dynamic programming can
be viewed on a continuum. By varying the amount of
bootstrapping and backups, we can arrive at any of
these methods. With full and deep backups we have
an exhaustive search, which has high computational
and spatial complexity. Accessed from [13].

Value-Based Learning
How do we learn the value of states we

end up in? This is one of the key questions
in reinforcement learning. If we understand the
value of the state we are in, we can look ahead
at values of the next states and come up with a
decision about the next action we should take (a
policy).

The main ways we can come up with an ac-
curate value function are bootstrapping and sam-
pling. Bootstrapping is using our own estimates
of the value of future states to update the value of
the current state. Sampling looks at the value of
many future returns (the accumulation of rewards
over time) [10] (See Lecture 4). We can put
some of the future ideas we will discuss (dynamic
programming, temporal difference learning, and
Monte Carlo learning) in this framework to give
us the unified view of reinforcement learning (see
Figure 3).

Dynamic Programming
Dynamic programming can be thought of as

backward induction. Basically, we find a solu-
tion to the smaller (or simpler) problems and

28 THREADS



work backwards to solve the entire problem. This
idea to solve sequential decision problems with
backward induction was used back in the 1940s
with Jon Von Neumann and Morgenstern and
applied to game theory. In sequential decision
making, these “simpler problems” that we solve
first could include the value of states at the end
of the episodes. We then can work backwards
and update the values of earlier states. In a 1949
paper by Arrow, Blackwell and Girshick, they
solved a statistical decision problem in a way that
used dynamic programming as we see it today.
Richard Bellman is given credit for showing that
backward induction can solve a huge class of
sequential decision processes [14]. Bellman came
up with the name “dynamic programming” be-
cause he wanted to hide the fact that he was doing
research from the Secretary of Defense (who
didn’t like the word “research”). He knew that
dynamic programming was a name that “not even
a Congressman could object to” [15]. This leads
us to the Bellman expectation equation (named
after Richard Bellman).

Before exploring this equation, we will define
two specific types of functions that will be used
throughout the paper. We continue to use the
notation from David Silver [10] (See Lecture 3),
and will do this for the rest of the paper. The
first is the state-value function vπ(s). This is the
expected return of an MDP starting from state s
and then following a policy π:

vπ(s) = Eπ[Gt|St = s]. (2)

Here Gt is the return, or the sum of discounted
rewards following a specific trajectory through
our state space. Specifically,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... (3)

where γ is the discount factor defined in
the MDP description. Notice that there may be
stochastic transitions built into our environment,
so the outcome of following the same policy will
not always give us the same result. That is why
we need to take the expectation of all of these
trajectories in our state space.

The second function is the action-value func-
tion qπ(s, a). This is the expected return starting

from state s and taking action a, and then follow-
ing policy π. In other words:

qπ(s, a) = Eπ[Gt|St = s,At = a]. (4)

For the state-value function we have the fol-
lowing relationship (called the Bellman expecta-
tion equation):

vπ(s) = Eπ[Rt+1 + γvπ(St+1)|St = s]. (5)

We can also create a version of the Bellman
expectation equation from the action-value func-
tion by substituting Gt with the expected reward
added to the discounted value of the next state.

Once we have calculated values of a future
state St+1 we can compute the value of our
current state St. If we have an idea of the
state transitions, we can visit every state in our
MDP and iteratively update our value function
(state-value or action-value). We will now briefly
highlight two methods, policy iteration and value
iteration, that learn the state-value function over
iterative updates.

We use the Bellman expectation equation to
do policy iteration. Policy iteration is broken
up into two parts: policy evaluation and policy
improvement. With policy evaluation we take a
policy π (which could be random to start) and
find the value function from the policy:

vk+1(s) =
∑
a∈A

π(a|s)(Ras

+ γ
∑
s′∈S

Pass′vk(s′)).
(6)

Notice that this equation follows from the
Bellman expectation equation mentioned earlier.
Here we are taking an expectation of the current
reward added to the discounted value of the next
state we could end up in. The expectation is
taken with respect to our probability distribution
π(a|s), which is our policy. This is the probabil-
ity of taking action a given that we are in state
s.

After we evaluate our policy, we can improve
it by updating π to be π′. This is known as policy
improvement. We pick π′ by taking the best (or
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Figure 4. A visual diagram of policy iteration. In policy
iteration we go back and forth between updating our
current policy π (policy improvement) and determining
our new value function V π (policy evaluation). Even-
tually we reach the optimal policy and value function,
π∗ and V ∗. Accessed from [16].

greedy) action in each state. By jumping back
and forth between policy improvement and policy
evaluation, we will converge to the optimal value
function. Next, we turn our attention to value
iteration. This is also used to approximate our
value function. At each iteration and for every
state in our environment we update vk+1(s) from
vk(s

′) with the following equation:

vk+1(s) = max
a∈A
{Ras + γ

∑
s′∈S

Pass′vk(s′)}. (7)

This equation follows what is known as the
Principle of Optimality. According to David Sil-
ver [10] (See Lecture 3), the Principle of Optimal-
ity states that a policy achieves the optimal value
from state s if and only if two conditions hold.
First, we need to be able to reach state s′ from s.
Next, we need the policy to achieve the optimal
value from state s′ as well. Essentially, we can
find the optimal value of our current state by look-
ing for the optimal action right now and assuming
we will take optimal actions in the future. This is
the essence of dynamic programming: finding the
optimal solution to smaller pieces of the problem
first and then using these solutions to find the
optimal solution of the entire problem.

That being said, one unavoidable question
remains. How do we know that these methods
eventually converge to an optimal value function?

The answer lies in what is known as the Contrac-
tion Mapping Theorem.

The Contraction Mapping Theorem is also
known as Banach’s Fixed Point Theorem [17] and
was developed by Stefan Banach. During World
War 1, Banach was unfit for military service
because of his poor eyesight. He worked on road
construction and taught in local schools instead
of fighting for his home country of Austria-
Hungary. By the time the war was over, he had
worked on several papers in his spare time. He
went on to found a new mathematics journal
and contribute innovations to functional analysis
[18]. One of these was the Contraction Mapping
Theorem which states:

Theorem 1:
For any metric space V that is complete (i.e.
closed) under an operator T (v), where T is a γ-
contraction, then T converges to a unique fixed
point at the linear convergence rate of γ.

In this case we can define the Bellman opti-
mality backup operator,

T ∗(v) = max
a∈A
Ra + γPav (8)

and the Bellman expectation backup operator,

T π(v) = Rπ + γPπv. (9)

These both fit the definition of an operator in
the theorem.

Notice how these correspond to the Bellman
equations for the value iteration (Equation 7) and
policy iteration methods (Equation 6). The the-
orem says that each of these operators converge
to a ”fixed point.” For the Bellman expectation
backup operator (policy iteration), the fixed point
is vπ, or the value function where we follow the
current policy π. Then as we do policy improve-
ment and the policy evaluation again, we inch
toward the optimal value function. See Figure 4
for a visualization of this process.

For the Bellman optimality operator, the fixed
point is the optimal value function. In other
words, value iteration will eventually converge to
the optimal value function [10] (See Lecture 3).
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Figure 5. Stanislaw Ulam, one of the main contribu-
tors to Monte Carlo methods. Accessed from [20].

Monte Carlo Learning

In Los Alamos in the 1940s, the situation
set to give us Monte Carlo methods. First, the
problems were based on complex simulations,
like the simulation of neutron histories, hydro-
dynamics, and thermonuclear detonation. Next, a
group of talented people were brought together to
work on the fission problem. Within this group
were the following brilliant mathematicians: Jon
von Neumann, who went on to develop digital
computers, Stan Ulam, who was interested in
using “statistical sampling” for many problems,
and Robert Richtmyer, who ran numerical anal-
ysis activities at Los Alamos. They were joined
by physicists Enrico Fermi, Nick Metropolis, and
Edward Teller. Lastly, the researchers had access
to human computers using hand calculators and
early digital computers [19].

After Ulam came up with the idea, von Neu-
mann saw the potential of the new approach. In
a letter to Richtmyer, von Nuemann explained
how the new method could be used to “generate
a statistically valid picture for the genealogical
history of an individual neutron” [21]. Monte
Carlo methods would go on to find applications

in other areas: numerical linear algebra, partial
differential equations, and integral methods [19].

Another area where Monte Carlo methods are
useful is in reinforcement learning. The main
idea behind Monte Carlo methods is to take
many statistical samples to arrive at an unbiased
estimate of the value of a state. As mentioned
earlier, in reinforcement learning we define the
value of a state to be the expected return [2] (See
Equation 2).

Recall that Gt is the return from time t.
In order to estimate the value of a state, we
can average the returns from a given state to
converge towards the expected value. One issue
with Monte Carlo learning is that we need ter-
minating episodes so we can accumulate reward.
Another issue is that there is high variance, so we
need many samples to narrow down on the true
value. However the big advantage of Monte Carlo
Methods is that the values are unbiased; in other
words, the expectation of the samples have good
properties for convergence [10] (See Lecture 4).

Temporal Difference Learning

In a paper in 1988, Richard Sutton used the
term temporal difference (TD) for the first time.
He described how temporal difference learning
works and its advantages. He gives an example
of a weatherman trying to predict on each day of
the week whether it will rain on the following
Saturday. A conventional approach will make
predictions from each day of the week about
whether or not it will rain on Saturday. Once
Saturday comes around, we have to update all
of our previous predictions for each of the days.
With TD methods, we will update each Saturday
rain prediction based on the next day’s prediction.
This is less computationally expensive because
once we have the tomorrow’s prediction, we can
update today’s. [22]. In other words, we are
bootstrapping future values to update our current
ones.

There are many different variations of tempo-
ral difference learning, but they boil down to this
idea of updating values by bootstrapping values
from the future. For instance, we can update the
value function to move towards the estimated
return Rt+1 + γV (St+1):
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V (St)← V (St) + α(Rt+1

+ γV (St+1)− V (St)),

where α is some learning rate.
This algorithm is called TD(0). Note that we

can combine the ideas from Monte Carlo methods
and Temporal Difference learning by defining the
n-step estimated return as:

G
(n)
t = Rt+1 + γRt+2 + ...

+ γn−1Rt+n + γnV (St+n)

We then have n-step temporal difference
learning:

V (St)← V (St) + α(G
(n)
t − V (St)) (10)

If we let the number of steps go out to a
terminal state, we have a sample from a Monte
Carlo Simulation [10] (See Lecture 4).

Another important development in the area
of temporal difference learning is Q-Learning.
Proved to converge by Christopher Watkins in
1992 [23], it is similar to temporal difference
learning described previously, except this time we
are using the action-value function instead of the
state-value function. The action-value function
(Q-values) are updated as follows:

(S,A)← Q(S,A) + α(δ) (11)

where

δ = R+ γmax
a′

Q(S′, a′)−Q(S,A) (12)

Equation 11 is a good example of the in-
tegration of the different ideas for value-based
methods seen throughout this section. We can
see the Bellman equation being used where we
are assigning Q(S,A) to move towards R +
γmaxa′ Q(S′, a′). We see backwards induction
from the future state S′. This is similar to the
value iteration equation seen earlier. Finally, we
have temporal difference learning where we as-
sign the value to move towards the temporal
difference R+ γmaxa′ Q(S′, a′)−Q(S,A) by
a factor of α.

Figure 6. Richard Sutton, a key contributor to tem-
poral difference learning and reinforcement learning.
Accessed from [24].

Policy-Based Learning
When our environment becomes too complex

(such as continuous states and actions in high di-
mensional spaces), we cannot solve the problems
with value-based reinforcement learning methods.
In these difficult scenarios, these learning meth-
ods don’t have guarantees to converge. Some-
times we need a different approach to solve these
problems. Instead of approximating the value
function, we can skip to the end goal and try
to approximate a policy function instead. These
methods, called policy gradient methods, have
advantages over value-based learning approaches.
Policy gradient methods often have fewer param-
eters and some guarantees of convergence to a
local optimum [25].

Policy gradient methods take a policy ob-
jective function J(θ) and seek to find a local
maximum by ascending the gradient of the policy
with respect to parameters θ:

∆θ = α∇θJ(θ) (13)

Here ∇θJ(θ) is the policy gradient (a vector
of the partial derivatives of each parameter with
respect to the objective function).

In a seminal paper by Richard Sutten, David
McAllester, Stinder Singh, and Yishay Mansour
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in 2000, the authors prove that an unbiased esti-
mate of the gradient can indeed be obtained from
experience and by using an approximate value
function satisfying certain properties [26].

This Policy Gradient Theorem as stated by
David Silver is as follows [10] (See Lecture 7):

Theorem 2:
For any differentiable policy πθ(s, a) that corre-
spond to the start state objective, average reward
objective, or average value objective the policy
gradient is:

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Qπθ(s, a)]

This is an important theorem because it ba-
sically says that as long as we can estimate
the action-value function Qπθ with respect to
our policy function πθ, as well as calculate the
gradient of our policy function, we can estimate
the gradient of our objective function. We can
choose to estimate the action-value function by
averaging the returns from each state (Monte
Carlo estimation), but this induces high variance.
In the next section we will look at a slightly
different approach.

Actor-Critic Methods
Is there a way to combine the advantages of

value-based and policy-based methods? This is
the exact idea behind actor-critic methods. The
actor here refers to the agent following a policy
and the critic is the value function that can be
used to determine how effective each action is.
Recall that the Policy Gradient theorem relies on
an estimate of the action-value function. Instead
of using returns to estimate Qπθ(s, a), we can
parameterize the value function like we did in
the value-based methods section. Thus we have a
new function Qw(s, a) with parameters w such
that:

Qw(s, a) ≈ Qπθ(s, a) (14)

Using this together with our parametrized pol-
icy function, we can estimate the policy gradient
and move the policy parameters towards a local
optimum [10] (See Lecture 7). By adding in
the parametrized action-value function (the critic)
we are able to give the actor a low-variance
knowledge of its performance, speeding up the
learning process [27].

Problems Encountered in
Reinforcement Learning

We will now explore two important problems
in reinforcement learning. These are the explo-
ration vs. exploitation dilemma and the credit-
assignment problem. There are many ways to
approach and solve these problems, however this
is not our emphasis here. The goal is to make the
reader aware of each problem and how it relates
to reinforcement learning.

Exploration vs. Exploitation

In 1991, James G. March published a semi-
nal paper [28] about organizational behavior ti-
tled “Exploration and exploitation in organiza-
tional learning”. Although not speaking about
reinforcement learning (or computer science for
that matter), it highlights an important problem
that comes up for all decision making agents.
The idea comes from this question, how do
we balance exploitation (doing what we already
know will work) with exploration (finding new
and possibly better options)? A common example
that can be seen throughout history is when to
refine existing technology or when to adapt and
make new technology. This idea of exploration
vs. exploitation can be seen in even the basic
decisions of our lives. Returning to the example
from the introduction, do I go to a new restaurant
(which might become my new favorite) or do I
go to a restaurant that I already know I like?

This dilemma is very prevalent in reinforce-
ment learning. In many real-world scenarios our
environment is too large to model and we are
required to search for high valued states. In order
to be successful we need to learn a strategy to
find and exploit those high valued states.

Multi-Armed Bandit A simple way to formulate
this problem is in terms of what is called the
Multi-Armed Bandit. Suppose we have n slot
machines that may be pulled in any order. Each
pull of an arm takes one time unit and we can
only pull one arm at a time. Pulling an arm either
results in a success or failure [29]. To simplify
the problem, each slot machine gives us the same
amount of money (say $1000). We don’t know the
probability of success for any of the machines, but
the goal is to make as much money as possible.
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Figure 7. Marvin Minskey, who contributed to many
of the foundational topics in artificial intelligence. Ac-
cessed from [30].

Which arms do we pull and how often do we pull
them? This is a classic example of exploration
(trying a slot machine we aren’t sure about) vs.
exploitation (sticking to the slot machine we have
had the most luck with).

In the end, it comes down to our ability to
quantify the value of information we are seeking.
As David Silver [10] (See Lecture 9) explains,
exploration is useful because it gains information.
Therefore, it makes sense to explore situations we
are uncertain about. However, if the information
we may gain is not useful, then exploring might
not be worth it. In other words, we want to know
the difference between what we are willing to lose
now (by exploring) and what we will gain in the
long term. This will vary based on the situation:
how much it costs to explore, how much we
can exploit right now, and potential payoff from
exploration. In the end, there is no easy answer.

The Credit-Assignment Problem

As a boy, Marvin Minskey read through his
father’s copies of Sigmund Freud, where he de-
veloped an interest in the human mind. While
many of his counterparts used computers to solve
complex numerical problems he was focused on
theories about how thinking worked. He stud-
ied physics at Harvard and then earned a PhD
of mathematics at Princeton. In 1956, Minskey
helped organize the “Dartmouth workshop” of

1956, considered by many to be the founding
event of artificial intelligence [31].

Minskey went on to publish a seminal paper
in Artificial Intelligence [32] where he describes
what is known as the credit-assignment problem.
He illustrates the problem with an example. In a
study called ”Friedberg’s Program-Writing Pro-
gram,” there is the goal to write a program for a
very simple digital computer. A simple problem is
defined: ”compute the AND of two bits in storage
and put the result in an assigned location.” A
device generates a random program, and the pro-
gram is run to see if it is successful in completing
this task. The successful information is used to
reinforce individual instructions in the program.
The program tries to find effective instructions
independently of the other instructions. It was
eventually able to solve the simple problem, but
it took 1000 times longer than pure chance. Why
is this the case?

Minskey argues that the problem lies with
credit-assignment. Since the instructions depend
on each other, the credit for a working program
can only be assigned to functional groups of
instructions, not to individual instructions. As
another example, when a grandmaster wins a
game of chess, how do we assign credit for
winning to each of the moves he made? The
moves are interconnected and dependent on each
other, and this makes it hard to assign credit to
individual actions. Minskey notes that by break-
ing our problem down into parts and solving them
sequentially (or recursively) we can hope to have
more success in dealing with credit-assignment
issues.

Conclusion

In the end, reinforcement learning is made to
mimic how we learn as humans. The idea is based
on psychology: our brain reinforces our behaviors
that give us rewards. With the theory of dynamic
programming, temporal difference learning, and
Monte Carlo methods, researchers built a math-
ematical foundation that addressed the problem
of finding a value function. Other ideas were
developed, like finding a policy function directly.
We can combine value based and policy based
approaches to get actor-critic methods. Built into

34 THREADS



reinforcement learning are two difficult prob-
lems: the exploration/exploitation dilemma and
the credit-assignment problem. If these problems
are any indication, reinforcement learning is still
an open area of research with much to be ex-
plored.
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Abstract—Machine learning, deep learning and artificial intelligence continue to push the world
towards greater innovations and opportunities. An overhyped artificial intelligence history rich in
trial, error and disappointment found major breakthroughs by increases in computational power
and discoveries in mathematical analysis. We give a brief history of neural networks, both
biological and artificial, and how scientists discovered these insights in neurons passing
information between each other. We review the mathematical structure of artificial neural
networks, including an overview and history of significant mathematical breakthroughs such as
gradient descent and backpropagation. After building a basic mathematical understanding of
artificial neural networks, we then give a brief history and mathematical overview of recurrent
neural networks (RNN), along with some of its applications. We finally glaze over the history and
mathematical rigor of long-short term memory (LSTM) RNNs. We finish the paper reviewing
some of the major breakthroughs in science and technology that have utilized LSTM RNNs, and
briefly discuss potential models that could replace LSTM RNN.

SINCE THE BEGINNING OF TIME, humans
have attempted to replicate and mechanize human
thought. Philosophers around the world strove to
create structured methods to deductive reasoning
dating back to the first millennium BCE including
philosophers such as Aristotle and Euclid [1].
If intelligence and understanding could be repli-
cated, societies could progress faster and farther
than anyone else. Breakthroughs in understanding
and utilizing artificial intelligence would create
the greatest nations, civilizations and societies to
ever exist on earth. Many existing processes for
humans could be easily supported and accom-
plished by machines, where machines could often
outperform humans in various settings such as
steel creation or computing mathematical solu-
tions. That being said, if consistent breakthroughs
in artificial intelligence could continue to oc-

cur, could machines one day outperform humans
entirely? While skeptics generally worry about
the potential power involved with understand-
ing human reasoning, scientists and philosophers
alike continue to explore general possibilities and
understanding of artificial intelligence.

While scientists wanted to find greater ap-
plications and advancements in artificial intelli-
gence, it wasn’t until Dartmouth held the first
AI conference that artificial intelligence received
its immortalized name, showcasing to the entire
world its focus and mission [3]. Despite increas-
ing optimism about the potential and future for
the newly created field [4], AI struggled to really
innovate and progress due to limited computing
power [5] and machines struggling to understand
commonsense knowledge or reasoning [6], which
essentially wiped out all funding from major
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Figure 1. Humans for hundreds of years have
been trying to understand and recreate intelligence.
Through recent discoveries and breakthroughs in
artificial intelligence, machines are replicating and
outperforming humans in various areas [2]

organizations for the AI research field through
the late seventies [7].

Despite another surge of funding in the
early eighties from various governments includ-
ing Japan and the United Kingdom [8], artificial
intelligence research hit another wave of funding
cuts as the market for specialized AI hardware
collapsed and expectations far exceeded reality
for most government funded AI research projects
[9].

However, the mid nineties through the turn
of the century brought great applications and
advancements in specific areas of artificial in-
telligence in outperforming the world leading
experts in their domain. Computers were beating
reigning world champions in chess and jeopardy
[10], while robots were autonomously driving
vehicles [11]. Computer power continued to grow
rapidly, where according to Moore’s law, the
number of transistors in a dense integrated circuit
doubles every two years, thus bringing on rapid
increases in computational power and memory
[12]. Despite these amazing applications, artificial
intelligence was hardly used or termed as such.
Scientists used terms such as informatics, compu-
tational intelligence or knowledge-based systems
to avoid the term artificial intelligence ”for fear
of being viewed as wild-eyed dreamers” [13].
Artificial intelligence had only failed to live up to
its expectation and hype, thus causing a decrease
in the term and overall focus of it in society.

Despite the decreased hype around artificial
intelligence, computing power and memory in-
creases have brought immense opportunities. Or-
ganizations could store increasingly more data

and computers contained increasingly more com-
putational power and speed, thus allowing sig-
nificantly greater breakthroughs in artificial in-
telligence. Advances in deep learning, partic-
ularly recurrent neural networks, have driven
progress in various areas and industries, allowing
near-perfect image recognition, text analysis and
speech recognition [14]. These innovations have
allowed scientists to develop greater models to
improve accuracy and machine understanding,
which brought on the creation of the long short-
term memory (LSTM) recurrent neural network
(RNN).

The history of artificial intelligence has been
one of severe backlash, disappointment and diffi-
culty. However, more than fifty years of artificial
intelligence research has culminated in incredible
innovations and breakthroughs that answer some
of society’s greatest problems today. This article
will focus on helping the reader understand both
the history and design of LSTM RNNs by first
explaining the history properties of artificial neu-
ral networks and RNNs so the reader may better
understand LSTM RNNs, then show many major,
existing applications of LSTM RNNs.

The Neural Network Discovery
Despite more recent innovations and appli-

cations, neural networks have been discovered
since the late-19th century. Two psychologists,
Alexander Bain and William James, each inde-
pendently discovered much of the basic princi-
ples behind contemporary neural networks. Bain
proposed that every human activity results in the
firing of a certain set of neurons between each
other [15]. Thus the consistent repetition of these
activities strengthens these neurons to help form
memory. Similarly, James suggested that activ-
ities and memories resulted instead from elec-
trical currents flowing among the neurons. His
theory proposed that individual neurons weren’t
necessary for every memory or action, but rather
that human thought was like a flowing stream
among neurons [16]. While both these scientists
had different views of neural activity, they both
helped formulate the general idea of neurons and
how information is passed between them.

While breakthroughs came in understanding
neural activity in the late-19th century, the first
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computational model for neural networks wasn’t
discovered until the forties. Neurosientist Warren
McCulloch wanted to understand the idea termed
”knowing,” or how humans came to understand
and interpret information. He brought on a young
scientist by the name of Walter Pitts, who had
previously worked with the founder of mathemat-
ical biophysics, a new area of study focused on
remodeling biology in terms of physical sciences
and mathematical logic [17]. These two spent
long hours collaborating to determine whether
the nervous system could be considered as a
universal computing device. This led them to the
discovery of McCulloch-Pitts neuron, the basic
structure of the modern-day artificial neural net-
work [18]. Little did these men know the impact
their breakthrough would have forever on the
artificial intelligence world. Despite having the
basic idea and structure of the model, research
really stagnated during the fifties through the turn
of the century due to limited computer processing
power, however renewed interest came in the late
2000s as computational power finally caught up
to the artificial intelligence demand.

Biological vs Artificial Neural Networks
Integral to understanding the artificial neural

networks (ANN) is understanding its similarities
and differences to biological neural networks. As
shown in Figure 2, biological neurons generally
retrieve signals from dendrites, process the inputs
inside the cell body then send out an output to
various other neurons [19]. Our brains contain
billions and billions of neurons, each simultane-
ously processing and sending out signals to other
neurons to help us understand every thought and
complete every action. These process extremely
fast, often asynchronously and very efficiently,
often without overworking its main host. Artifi-
cial neural networks are quite different: instead
of billions of neurons, ANNs contain usually
10-1000 neurons. ANNs are extremely compu-
tationally heavy, requiring excessive amounts of
energy to make these computations. However, the
two neural networks are similar in their overall
process: receiving, computing then transmitting
information between different neurons.

While biological neurons pass information
between each other, ANN neurons use math to

Figure 2. As shown above, biological neural networks
work through the neuron receiving signals through
dendrites, cell bodies processing them, then axons
sending signals to other neurons. Artificial neural net-
works work similarly through retrieving inputs, send-
ing inputs to the hidden layer, processing the inputs
in the hidden layer then finally sending the output to
the user [19]

Figure 3. Basic mathematical and theoretical struc-
ture for an artificial neural network [20]

compute the input to best predict the desired
output. The goal for an artificial neural network
is to learn the mathematical relationship between
an input variable x and an output variable y.
In its most basic sense, the network finds the
weights w and constant b that best explains the
relationship between x and y. Artificial neural
networks generally follow the mathematical logic
and pattern as shown in Figure 3 [20]. We start
by multiplying our inputs x of size n with our
weights w of size n:

x ∗ w = (x1 ∗ w1) + ...+ (xn ∗ wn) (1)

We then add in our constant b to create our
equation we initialize as z:
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z = x ∗ w + b (2)

We can then plug our z value into our sigmoid
function σ(z) that maps our z value to a specific
output ŷ:

ŷ = σ(z) =
1

1 + ε−z
(3)

The neural network uses these three equations
to create a function that most accurately predicts
ŷ to the true output y. This is the mathematical
basis of most neural network models; creating
a function to mathematically explain the rela-
tionship between inputs x and output y. Now,
we would be extremely lucky if we initially
knew the correct weights w and constant b that
most accurately relates x to y. We then have
the question: how does the model determine the
appropriate weights w and constant b to best
explain x to y? That is where gradient descent
and backpropagation come in, which are both
integral to creating the most accurate weights w
and constant b.

Optimizing the ANN using Gradient
Descent with Backpropogation

While gradient descent and backpropagation
are actually not part of the LSTM RNN, these are
essential for understanding the ANN and RNN,
which rely heavily on these two mathematical
concepts. The LSTM RNN was actually primarily
created to combat the problems that gradient
descent and backpropagation cause for the ANN
and RNN [21]. Thus to better understand the
value of the LSTM RNN, we will give the
overall background and theory behind these two
concepts. We first give background and explain
gradient descent, which will help us understand
backpropagation and why gradient descent uses
it.

Gradient descent was originally discovered by
the famous French mathematician Augustin-Louis
Cauchy in 1847, long before even neurons were
discovered or neural activity was understood.
He was entirely interested in minimizing a non-
negative function, and found that incrementally
moving the inputs in the direction of their partial
derivatives would give the minimum value once
the partial derivatives were 0 [22]. As we see in

Figure 4. The basic idea of gradient descent is to
gradually follow the direction of the gradient (or partial
derivative) of the weight until its partial derivative
reaches 0, which means the cost function is at a
minimum [23]

Figure 4, the model starts with an initial weight
then incrementally moves in the direction of the
gradient until it reaches its minimum value [23].
While the minimum does occur for nonnegative
functions, the size of the incremental steps can
either lead to the optimal weight or diverge from
the minimum value.

For a given weight w, we can compute its
gradient, or partial derivative, in conjunction with
its cost function C, then update the the weight w
by the direction of its partial derivative multiplied
by the learning rate α:

w = w − (α ∗ ∂C
∂w

) (4)

Thus by incrementally moving the weight w,
we can find the optimal value that helps minimize
the error between our predicted output ŷ and the
actual output y. Now, we use backpropagation to
compute the partial derivative of C with respect
to each of the weights w and constant b.

Backpropagation became wildly popular in
the early 2010s due to the increased value in
modeling using neural networks, however its ap-
plication to neural networks began in the mid-
eighties. Backpropagation is based entirely on the
chain rule in calculus, which we will review here.
As an example, we let f and y be any function
based on input x and let F be a function of both
f and y:

F (f, y) = f(x)y(x) (5)
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Figure 5. Backpropagation allows the model to work
backward through the ANN by multiplying partial
derivatives together until it reaches its desired layer,
thus computing the gradient to help optimize the
weights w and constant b [25]

The chain rule in calculus tells us that we can
compute the partial derivative of F with respect
to x by computing several partial derivatives [24]
until we arrive at functions containing x as shown
below:

∂F

∂x
=
∂F

∂f
∗ ∂f
∂z

+
∂F

∂y
∗ ∂y
∂z

(6)

It was during the mid-eighties that mathe-
maticians David Rumelhart, Geoffrey Hinton and
Ronald Williams experimented with backpropa-
gation in artificial neural networks. They found
that backpropagation could generate useful in-
terpretations of incoming data in hidden layers
of neural networks [26]. Backpropagation would
allow networks to compute the gradient of the
weights quickly and simply to optimize the cost
function and predict the outputs most accurately.

In returning to our ANN based on equations
(1), (2) and (3), we can use gradient descent
with backpropagation to compute the relationship
between inputs x and outputs y most accurately.
We first define our cost function C that helps
us penalize outputs incorrectly predicted by our
weights w and constant b:

C =
1

n

n∑
j=1

(yi − ŷi)
2 (7)

Now we can use gradient descent with back-
propagation to find the optimal weights w and
constant b. Gradient descent allows us to incre-
mentally find w and b by subtracting its the partial

derivative of the given variable. Now, we can
use backpropagation to find the partial derivatives
of the cost function C in terms of our desired
variables w and b. We first compute the partial
derivative of C with respect to each weight wi

by backpropagation using the chain rule:

∂C

∂wi

=
∂C

∂ŷ
∗ ∂ŷ
∂z

∗ ∂z

∂wi

(8)

We then compute the partial derivative of C
with respect to the constant b:

∂C

∂b
=
∂C

∂ŷ
∗ ∂ŷ
∂z

∗ ∂z
∂b

(9)

Now that we have our gradients, we can use
gradient descent to incrementally move each of
our desired variables towards their optimal value.
We control the overall change to the variables
w and b each iteration through the learning rate
α. Thus we can update each weight wi and the
constant b as follows:

wi = wi − (α ∗ ∂C

∂wi

) (10)

b = b− (α ∗ ∂C
∂b

) (11)

While this approach looks at generally one
dimensional inputs and only one activation func-
tion, this model can be extended to n-dimensional
inputs and n-activation functions. Because the
neural network is so robust, it can find nonlinear
mappings that before had been nearly impossi-
ble to compute [27]. Applications include areas
such as pattern recognition, facial recognition,
sequence recognition, e-mail spam filtering and
even medical diagnosis.

Emergence of the Recurrent Neural
Network

Despite its beginning success, the artificial
neural network still had some major disadvan-
tages. ANNs had difficulty understanding sequen-
tial data, as the model had no way of looking
back at previous inputs. Gradients are computed
after each iteration, and weights are adjusted
accordingly. Thus the model couldn’t check on
the validity of previous inputs towards under-
standing the next input. For certain types of
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Figure 6. The Recurrent Neural Network (RNN) allows the network to learn from previous inputs to help predict
subsequent outputs. It adds the previous hidden layer to the subsequent hidden layer to better understand the
relationship between subsequent input data [28]

problems based on time-dependent or sequential
data, models now needed the ability to check
previous inputs to better compute the next output.
Thus Recurrent Neural Networks (RNNs) were
discovered to further help this issue.

American psychologist David Rumelhart first
discovered the idea of using the memory of
the model to help predict the next output [29].
While looking at the difficulties associated with
backpropogation, he found that the previous hid-
den state could be used as a variable to help
predict the next output values. Before finding
the LSTM RNN, scientists Sepp Hochreiter and
Jurgen Schmidhuber helped develop many of the
first recurrent neural networks [30].

The RNN is very similar to the ANN, however
it adds an extra input to each neuron. As seen in
Figure 6, neurons receive both the input variables
and the previous hidden layer before computing
the next output, allowing the model to better
understand the relationship between successive
input variables. It is very similar mathematically
to ANNs but adds in the previous hidden layer
variable ht−1 with its accompanying weight v
to each activation function [21]. Similar to our
previous problem, we can compute our hidden
layer ht from the input xt and previous hidden
layer ht−1 by our σ function:

ht = σ(u ∗ xt + v ∗ ht−1) (12)

We then use a softmax function to help map
the hidden layer ht to the output ŷ:

ŷt = softmax(w ∗ ht) (13)

As we see, the RNN model increases the
number of weight variables due to the model
computing the weights for both the current hidden
layer ht and the previous hidden layer ht−1. Com-
puting and finding the correct weight for the pre-
vious hidden layer allows the model to understand
the relationship between previous and current
inputs. Thus model complexity and computation
increase, however the model can significantly
better understand the relationship between subse-
quent input variables. Our cost function remains
the same from our ANN model, however we need
to use gradient descent with backpropagation for
each of the weights u, v and w.

Thus we use our same cost function to com-
pute the error between the predicted ŷ and actual
output y:

C =
1

n

n∑
j=1

(yi − ŷi)
2 (14)

We then use backpropagation to compute the
gradient for each of the weights. The weight v has
the following partial derivative from backpropa-
gation, working through both the cost function C
and our predicted output function ŷ:

∂C

∂v
=
∂C

∂ŷ
∗ ∂ŷ
∂v

(15)

To backpropagate through the other weights v
and u, we must work through the same equations

42 THREADS



Figure 7. The Long-Short Term Memory (LSTM) RNN adds more complexity into our algorithm to help combat
the gradient growing to large or too small. It utilizes the inputs xt, previous hidden state Ht−1 and previous
memory state Ct−1 to compute the new hidden state Ht and new memory state Ct, thus helping predict the
correct values without using gradient descent with backpropagation [31]

as v but also the current hidden layer function ht

as well:

∂C

∂w
=
∂C

∂ŷ
∗ ∂ŷ

∂ht

∗ ∂ht

∂w
(16)

∂C

∂u
=
∂C

∂ŷ
∗ ∂ŷ

∂ht

∗ ∂ht

∂u
(17)

After computing the partial derivatives of
C with respect to each other weights, we can
use gradient descent and increment each of the
weights according to their partial derivatives:

v = v − (α ∗ ∂C
∂v

) (18)

w = w − (α ∗ ∂C
∂w

) (19)

u = u− (α ∗ ∂C
∂u

) (20)

These added variables and weights allowed
extensive increase in the accuracy and under-
standing of models for sequential data. Accuracy
greatly increased for various problems including
time series prediction, speech recognition, time

series anomaly detection, rhythm learning, mu-
sic composition and protein homology detection
[32] [33]. RNNs transformed how we approached
sequential data, making major accuracy break-
throughs in previously difficult prediction prob-
lems.

Necessity of Long Short-Term Memory
RNNs

Although RNNs increased accuracy tremen-
dously, there were still problems that most RNNs
kept running into. More specifically, both RNNs
and ANNs often suffered from the exploding
or vanishing gradient problem [21]. As model
complexity increases, a given RNN or ANN may
have anywhere from ten to one hundred different
hidden layers inside of the model. Thus as we
find the partial derivatives of each weight through
backpropagation, partial derivatives may grow
or shrink exponentially. Either problem would
hurt the ability of the weights to converge to
an optimal value to further minimize the cost
function. Thus scientists needed a new model to
find optimal weights that don’t follow a linear
gradient pattern, where weights could be adjusted
nonlinearly. This is when scientists discovered the
Long Short-Term Memory (LSTM) RNNs.
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Scientists Sepp Hochreiter and Jurgan
Schmidhuber in 1997 found the algorithm upon
studying how to approach the vanishing gradient
problem [30]. Their version included important
additions to our previous RNN mathematical
approach including three types of gates that pass
information between the previous and current
inputs but also another input called the memory
state Ct. As seen in Figure 7, the LSTM model
increases the complexity of even our RNN
significantly. We will dive into the mathematical
setup of the equation and its importance [31].

The model uses three different inputs into
the equation: the input variable xt, the previous
hidden state Ht−1 and the previous memory state
Ct−1 to compute four different functions, each
using their own weights. The first function f is
deemed the forget gate, calculated from the input
variable xt and the previous hidden layer Ht−1

with their associated weights uf and wf using
the σ activation function:

ft = σ(uf ∗ xt + wf ∗Ht−1) (21)

We then compute the candidate layer C̃t using
the same inputs as the forget gate f with its own
weights uc and wc but with the tanh activation
function:

C̃t = tanh(uc̃ ∗ xt + wc̃ ∗Ht−1) (22)

The next two functions are the input gate It
and output gate ot, which follow similar compu-
tation as that of the forget gate function ft but
with their own weights:

It = σ(ui ∗ xt + wi ∗Ht−1) (23)

ot = σ(uo ∗ xt + wo ∗Ht−1) (24)

The new memory state Ct is computed using
the forget gate ft multiplied by the previous
memory state Ct−1. The forget gate ft values are
either 0 or 1, thus it only allows important infor-
mation to pass from the previous memory Ct−1

to the new memory state Ct. The Ct computation
also utilizes the input gate It and candidate layer
C̃t:

Ct = ft ∗ Ct−1 + It ∗ C̃t (25)

Once we have the new memory state Ct, we
can compute the new hidden state Ht using the
output gate ot:

Ht = ot ∗ tanh(Ct) (26)

We drastically increased the number of
weights, parameters and inputs from our previous
method, however it helps us to better understand
the inputs we are looking at. The model is able
to truly understand the relationship between each
subsequent input variable [31].

LSTM Applications and Model
Improvements

While ANNs and RNNs worked well for basic
training, LSTM RNNs consistently outperformed
the previous models significantly for any type
of sequential data. Due to its inability to rely
on the gradients themselves and its ability to
forget given inputs, LSTMs won various com-
petitions in the late 2000s. The 2009 ICDAR
connected handwriting recognition competition
had 10 teams from around the world use or create
algorithms to most accurately recognize cursive
handwriting. Three different datasets were created
and tested, where each dataset differed in the
number of words and training size. Amazingly,
the LSTM RNN created by Alex Graves predicted
each dataset with the highest accuracy, and sig-
nificantly more accurate than any of the other
models [35]. This is one of many examples of the
LSTM significantly outperforming other models,
increasing its use into various other fields.

Today many of the major tech firms using
varying speech recognition and natural language
processing applications are implementing LSTM
models to increase the overall accuracy of their
results. Google started using LSTM models for
speech recognition on Google Voice, cutting tran-
scription errors by 49% overall [36]. Facebook
changed from a phonetic-based model to an
LSTM RNN in 2018, which provided signifi-
cantly higher accuracy and coherency as seen
in Figure 8. Today, Facebook’s LSTM RNN
performs around 4.5 billion automatic translations
every day [34]. And most importantly, Apple
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Figure 8. Facebook changed from a phonetic-based model to a LSTM RNN model to help its translation
between various languages. We can see the major difference between the top and bottom translations: the
LSTM RNN model was significantly more coherent and accurate [34]

started using LSTM RNNs in 2016 for quicktype
in the iPhone and in Siri [37]. For Apple iPhone
users, quicktype provides word suggestions that
pop up once the use starts typing. The LSTM is
trained on the exact data the user inputs, learning
user sentence patterns to help predict what the
user wants to say. I use this on a consistent basis,
and the model continues to improve the more I
type into it and use the suggestions.

While LSTM RNNs have proven very con-
sistent and reliable, other models have grown
in popularity over the past couple years. More
recently, models called Transformers are consis-
tently being utilized and often outperforming the
LSTM RNN [38]. Transformers doesn’t use any
recurrent steps, but instead uses attention, where
the model decides which aspects of the input
are most important in the model. It does this
through encoding the important aspects of the
input then decoding these aspects into terms of
the output. While further iterations and changes
to these Transformer models may one day out-
perform LSTM RNNs entirely, the LSTM RNN
still continues to show its value in understanding
sequential data, as we see in its various natural
language applications.

Conclusion
As we have seen, LSTM RNNs prove to

be one of the most power models that exist
today. Hundreds of years of artificial intelligence
research have helped culminate into this great
and useful algorithm. Now, LSTM RNNs won’t
be a fix all solution to any machine learning
situation; often basic machine learning methods

will prove adequate enough in achieving our
various goals. Additionally as computation power
continues to increase, LSTM RNNs may become
more obsolete and useless, but the power and
innovation they have created thus far will forever
be respected and cherished. Artificial intelligence
continues to progress, evolve and change, and
while models will change and evolve, many of
these general principles and mathematical discov-
eries will continue to play huge roles in future
model iterations and breakthroughs.
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Neural Sequence Modeling
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Abstract—Neural sequence modeling emerged with Rumelhart and Hinton’s 1986
groundbreaking paper, ”Learning representations by back propagating errors”. Since then,
recurrent neural networks have been synonymous with neural sequence modeling. That has
remained the case until recent history, when Ashish Vaswani’s 2017 paper, ”Attention is all you
need”, introduced non-recurrent self-attention for sequence modeling, ushering in a paradigm
shift for neural sequence modeling. This review will traverse the history of neural network-based
sequence models, focusing on the various research developments. In doing so, it will inevitably
touch on other breakthroughs that catalyzed advances in neural sequence modeling and explain
associated technical concepts.

IN THE EARLY 1940’S, Warren McCulloch
and Walter Pitts sought to mimic human nervous
activity by creating a mathematical unit that could
be composed with many other units to compute
complicated logical functions. They proposed the
first “artificial neuron” - the Threshold Logic
Unit (TLU) [1], which used a binary valued
threshold function as the transfer unit. 15 years
later, Frank Rosenblatt, a Cornell Aeronautical
Laboratory psychologist, sought to understand
humans’ ability to perceive, think, remember, and
act based on past experience. His fundamental
questions were 1) How do humans detect or sense
information about the natural world? 2) In what
form do they remember information? and 3) How
do they use information stored in memory to
guide future actions and perception? In 1958 he
proposed one answer to these questions, similar to
the TLU: a mathematical model based on human
perception, which he called “the perceptron” [2].
His perceptron allowed a broader range of weight
values than the binary artifical neuron. In the
ensuing decade, the perceptron stirred up a flurry
of hype and research in learning theory – the first
wave of modern artificial intelligence.

However, in 1967, MIT professors Marvin
Minsky and Seymour Papert demonstrated some
limitations of single-layer perceptrons in model-

ing certain order-N tasks - specifically, the inabil-
ity of single-layer linear perceptrons to model an
XOR function. The XOR function is an example
of a parity problem of order two. Said differently,
the problem is: given a sequence of length 2,
classify sequences correctly according to a given
rule (truth table). Minsky and Papert also posited
that the extension of single-layer perceptrons to
many-layer perceptrons is “sterile”. They pub-
lished their conclusions in “Perceptrons” [3]. This
book is credited with triggering the first AI winter
in the 1970s.

In 1985, David Rumelhart and Geoffrey Hin-
ton presented an algorithm for the training of
multi-layer perceptrons, called “back propaga-
tion” [4]. The idea of back-propagation existed
in principle before this time [5] [6] [7], but
Rumelhart and Hinton were the first to concretely
demonstrate its effectiveness in training a multi-
layer perceptron to learn meaningful patterns.
Back-propagation involves the using the chain
rule of derivatives to “propagate” error backwards
through a network by computing the gradient of
that error with respect to the inputs, then updating
the neuron weights to reduce the error. They used
this scheme to train a multi-layer perceptron to
correctly classify sequences up to a length of 8.
They found that a multi-layer perceptron with
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N hidden units could solve a parity problem for
patterns of length N. Thus, Minsky and Papert’s
unproven intuition against multi-layer perceptrons
prevented them from seeing one solution to the
order-N parity problem. In their groundbreaking
work, Rumelhart and Hinton also introduced re-
current neural networks and showed that there
exists an equivalent feed-forward network for
every recurrent network1.

Based on this idea, they presented a recurrent
neural network architecture based on a single
feedforward block that operated over a sequence,
whose outputs were passed into itself “recur-
rently”, and so on for N iterations. They trained
this architecture via the principles of back prop-
agation that they introduced in the paper. They
trained the recurrent neural network to solve the
shift-register problem - to shift the inputs one slot
to the right. This recurrent neural network was not
designed to operate on or produce sequences of
variable length. Its role was simply to perform
the same operation over and over: to shift the
sequence by n slots through n passes through the
network.

They then trained the network for a more
difficult problem: learning to complete sequences.
They created a synthetic dataset where each input
letter decoded into two digits. In this case, at
each time step, they activated the corresponding
input neuron and collected a loss based on the
difference between the predicted next character
and the target. This network is the earliest recog-
nizable form of the recurrent neural networks that
are familiar to most researchers today. Following
Rumelhart and Hinton’s initial work, they formal-
ized a recurrent neural network (RNN) architec-
ture in which memory was built up in a hidden
state that was passed through the sequence. Their
work in back-propagation launched the second
wave of modern artificial intelligence.

The LSTM and its variants
The next significant advance in recurrent neu-

ral networks was introduced by Sepp Hochre-
iter and Jürgen Schmidhuber, who observed the

1Rumelhart and Hinton credited Minsky and Papert with this
idea, but a detailed search of “Perceptrons” revealed no explicit
statement of this result. The 1985 Rumelhart paper was the
earliest mention of recurrent networks that the author of this
review discovered.

tendency of error gradients in RNNs to either
blow up or vanish as the length of the sequence
increased. To resolve this, they structured the re-
current unit to have various pathways for informa-
tion travel and gates to add/remove information
in intentional ways, in a new architecture they
termed “Long Short-term Memory” (LSTM) [9].
It includes a “forget gate” to remove previous
context information, a “remember gate” to add
new information, and a context gate to determine
which part of the hidden state is most useful for
the next recurrent token. Based on the hidden
state from the previous layers and the current
input token, the network governs what informa-
tion passes through the gates of the current layer
(see 2). The LSTM architecture is diagrammed
in the left hand side of Figure 2. The proposed
LSTM was able to learn an adding task requiring
memory of 1000 input tokens.

Contemporary to Hochreiter and Schmidhu-
ber’s introduction of the LSTM, Schuster and
Poliwal recognized that a weakness of LSTMs
(and RNNs generally) is that they are inherently
unidirectional. There are times when context from
both sides of a sequence can be helpful for
sequence-based prediction – for example, a fill-
in-the-blank task. More generally, this applies to
any task that relies on an input sequence as a
whole, rather than on unidirectional relationships.
For these types of prediction tasks, they devel-
oped the first bidirectional RNNs, demonstrating
their effectiveness over RNNs on a phoneme
classification task. A few year later, Hochreiter
and Schmidhuber extended bidirectional RNNs to
LSTMs [10].

Interlude: AlexNet
Here we step away from our discussion of

LSTMs for a moment, to place into context the
whirlwind of research on recurrent networks that
occured in the mid- to late-2010s. In 2012, Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
entered the Imagenet 2012 image classification
challenge. Previous entrants had used relatively
shallow neural network architectures (≤ 3 hidden
layers). Krizhevsky trained a deep2 convolutional
neural network with 8 layers via an efficient

2By the standards of the time. Current deep neural networks
have hundreds of layers.
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Figure 1. A diagram from Rumelhart [4] showing the how a recurrent network can be represented as a
feedforward neural network.

Figure 2. A comparison of a ”vanilla” RNN unit, an LSTM recurrent unit, and a GRU. Red circles represent
pointwise operations, yellow boxes represent fully connected layers followed by the given activation function.
Diagram from Chris Olah’s blog [8]

.

GPU implementation of the 2D convolution op-
eration [11]. The network achieved top-5 error
rate of 16 percent, compared to the next best
contender achieving 26 percent top-5 error rate.
The runaway success of “AlexNet”, as it became
known, initiated a third wave of AI research.
The success of these two ideas, 1) deep neural
networks that could learn a hierarchy of features,
and 2) efficient GPU implementations of neural
network training, were the foundation on which
the following years of research would rest.

More LSTMs and data-suited
architectures

Increased interest in deep learning carried
over into research in deep sequence-based neural
network models. In 2014, 25 years after Hochre-
iter and Schmidhuber introduced the LSTM,
Kyunghyun Cho et. al. introduced a simpler
memory-based recurrent model, called the “gated
recurrent unit” (GRU) [12]. They designed this
model to work by similar principles to the LSTM,
but with the forget and remember gates merged
into a single unit, and with the context vector and
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hidden vector merged into one (see 2).
In the 2010s, neural networks were beginning

to attain performance high enough to be used in
practical applications. It was these applications
that began to drive adaptations of network archi-
tectures and theoretical work. Whereas recurrent
neural networks were originally developed in the
context of learning higher-order functions, re-
searchers now sought after RNNs for their ability
to model variable-length input and output data.

One of these variable-length data tasks was
machine translation, a problem in the field of
natural language processing (NLP). In 2014, Ilya
Sutskever (one primary authors of the AlexNet
paper) wrote a paper on sequence-to-sequence
language translation using LSTMs [13]. He used
an encoder LSTM and a decoder LSTM to trans-
late from English to French with high accu-
racy. This paper was indicative of a shift toward
application-driven neural network research.

In 2015, Andrej Karpathy contributed a blog
post [15] that formalized several sequence-to-
sequence problems: a many-to-one mapping, a
one-to-many mapping, and two types of many-to-
many mappings (see Figure 3). Though not a peer
reviewed publication, this post provided a simple
framework for thinking about sequence modeling
problems and inspired many application-driven
RNN architectures. These applications included
image captioning [14], caption-conditioned image
generation [16], music generation and transcrip-
tion [17], speech recognition [18], text-to-speech
[19], and many others. This wasn’t the first time
that RNNs had been trained for many of these
tasks, but the effectiveness of deep RNNs, similar
to deep CNNs, drove a research trend of applying
RNNs to everything.

CNNs for sequences
Aäron van den Oord, in 2016, introduced

an alternative to RNNs for sequence modeling:
causal convolutional neural networks [20] (see
Figure 4). These networks resolve a key limitation
of RNNs: because they operate on the entire
sequence and lack sequential dependencies in the
hidden layers, they can train in batches, leading to
much faster convergence. In particular, they excel
on very long sequences, such as audio waveforms.
They trained their model (“WaveNet”) to generate
state-of-the-art text-to-speech.

Long-term dependencies and attention
While many researchers were experimenting

with iterations on the RNN architecture and
its applications, Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio were thinking about a
fundamental problem with the traditional RNN
training scheme. Though LSTMs had the ability
to maintain a memory, they were tasked with the
challenge of compressing a sequence of arbitrary
length into a fixed-length vector.

To solve this problem, the authors introduced
a principle for training recurrent neural network
which they termed “attention” [21]. Within 5
years, attention-based neural networks would un-
seat RNNs in almost all major sequence process-
ing benchmarks.

The basic principle of attention is as follows:
rather than packing all the contextual information
of a sequence into a fixed-length vector, store
the intermediate hidden states in memory, and
let the network “attend to” (pay attention to)
the hidden states that it determines are most
relevant for predicting the next token. There is
no “remembering” or “forgetting” like there is in
a traditional LSTM. The network remembers all
previous tokens. The network applies a transfor-
mation to the hidden states to obtain an attention
vector. If the preceding sequence has length N ,
then this attention vector has length N . We then
multiply this attention vector by the hidden state
matrix to obtain a single context vector of length
d. This is the vector that we pass as the hidden
state to the RNN to predict the next token.

Attention offers several benefits over tradi-
tional LSTM memory models. First, there is no
temporal degradation of the context vector. By
packing a sequence of arbitrary length into a
fixed length vector, an RNN inevitably has to
forget things that could be useful later on. On
the other hand, an attention RNN stores all of
these values. Second, an attention RNN allows
the network to “look at” different parts of the
preceding sequence when it is predicting different
tokens. You could imagine that the helpful context
for predicting a noun would be totally different
from the helpful context for predicting a verb.
An LSTM would force you to cram all of that
info into one vector; attention allows the network
to choose its context tokens. Third, the error
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Figure 3. The sequence modeling problems summarized by Andrej Karpathy. Diagram from Karpathy’s blog
[14]

.

Figure 4. Diagram of a causal convolutional network for sequences.

doesn’t have to travel as far backward through
the network during back-propagation – there is a
direct route from the error to each intermediate
activation. Finally, attention is very interpretable
– the network can tell you exactly which tokens
or input features it looked at in order to make its
decision on the prediction task. One drawback of
attention is that its memory requirement is O(L),
where L is the number of tokens.

Attention caught hold quickly, and people
even started applying attention-inspired principles
in image domains. But the iteration of attention-
based sequence modeling was not yet complete.

Self-attention and the Transformer
The next leap came from Ashish Vaswani,

who in 2017 published “Attention is all you need”
[22], advocating an entirely new sequence-based
architecture. He and his co-authors called this

architecture the “Transformer” neural network.
The architecture bears striking resemblance to
attention-based RNNs, but it has some key dif-
ferences. Principally, it uses a strategy that the
authors dubbed “self-attention”.

The Transformer seems to solve almost every
problem present in RNNs and other sequential
architectures. It solves the problem of modeling
long sequences without losing resolution by pass-
ing a context vector through L layers. It removes
the sequential training constraint, allowing for
batch training. It allows global relationships (from
one side of the sequence to the other) as opposed
to the local relationships modeled by WaveNet.
With this architecture, Vaswani et. al. set new
benchmarks for neural machine translation.

The one drawback to self-attention is that it
requires O(L2) memory, where L is the length
of the input sequence. However, researchers have
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Vanilla RNN

Attention RNN

Self-attention network

Figure 5. A comparison of a vanilla RNN, an attention-based recurrent network, and a self-attention-based
network. These are not accurate to fine implementation details, but rather are diagrammed to illustrate the
fundamental commonalities and differences between the architectures.
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already begun to solve this problem; for example,
the “Performer” achieves similar performance to
the Transformer with linear memory requirements
and no major compromising assumptions (i.e.
sparsity) [23].

Interlude 2: Technical tutorial on
Transformers

We will now examine the Transformer ar-
chitecture, and the advances that it offers over
traditional attention RNNs. We will first cover
a high-level list of the Transformer’s advances,
then study the mathematical implementation of
self-attention.

List of Transformer advances
While reviewing this list, the reader is en-

couraged to examine Figure 5 and identify these
differences between the Attention RNN diagram
the Self-attention diagram. 1: The Transformer
computes a attention-based context vector not just
for the next token, but for all of the tokens. 2: It
is not sequential. Due to the fact that the network
can attend to any point in the input sequence,
there is no longer any reason to pass information
sequentially through the network. This allows
for easier batch training, eliminating a major
bottleneck for RNNs. 3: It uses different linear
projections for each vector involved in the dot
product. It terms these projections, respectively,
“queries”, “keys”, and “values”. This allows the
network to learn what to attend to, rather than
each token only attending to tokens with a similar
embedding. 4: It adds multiple attention “heads”
(not pictured in Figure 5), allowing the network
to simultaneously attend to multiple parts of
the sequence, if doing so will be beneficial for
learning. 5: It includes “positional encodings”
which it adds to each input token embedding.
This gives the network a point of reference to
learn sequential relationships between the input
tokens, rather than creating a linear combination
context vector containing no information on the
relative positions of the tokens.

Mathematical implementation of self-attention
To compute one self-attention layer, we start

with an input tensor of dimension L x d, con-
taining the embeddings for each token in the

sequence. Then for each of h attention heads,
we multiply that layer by three weight tensors of
dimension d x d

h
, which we will call Wq, Wk, and

Wv, to obtain three L x d
h

tensors, which we call
Q, K, and V . Having a Q, K, and V for each
attention head allows the network to pay attention
to different parts of the inputs simultaneously.
Next, we multiply these tensors as follows:

A = QKT (1)

This gives us an L x L tensor of attention
weights. We apply the softmax function across
the second dimension of A, which will result
in attention weights that sum to 1 across the L
dimension. Finally, we apply a scaling term 1

d/h

and multiply this tensor by the value tensor V to
obtain an L x d

h
tensor.

B =
softmax(A)V

1
d/h

(2)

Lastly, we concatenate the attention heads back
together, leaving us with an output tensor of
dimension L x d, the same size as the input.

C = Concat(Bi) ∀i ∈ {1 . . . h} (3)

GPT and beyond: pre-training and
model scaling

Since the Transformer and self-attention, most
recent advances in neural sequence models have
come via iterations on the Transformer model.

The Transformer was originally introduced
with an encoder-decoder architecture to handle
machine translation. Later iterations that were
based on NLP for a single language used only
the encoder [24] or decoder [25] half of the
Transformer. Jacob Devlin, with his BERT model,
adopted the techniques of bi-LSTMs to train a
transformer that could look at context tokens on
both sides of the token to predict [24].

But interestingly, the greatest improvements
came from two relatively unoriginal techniques:
pre-training and model scaling. In 2018, Alex
Radford published a paper on a “generative pre-
trained transformer”. He first trained a trans-
former decoder on a book text dataset in a
self-supervised way, training it to predict the
next token in the sequence. He then fine-tuned
this model by adding a single trainable layer

54 THREADS



at the end of the network for each task he
wanted the network to perform, then training on
a smaller dataset related to the fine-tuning task.
The pre-trained/fine-tuned models vastly outper-
formed models with the same architecture that
were trained without fine-tuning. Later papers,
including GPT-2 [26] and GPT-3 [27], increased
the model size from millions of parameters to
as many as 175 billion parameters, and saw
continued increased performance with increased
model size.

The recent advances in sequence modeling
illustrate the shift in research that occurs when
algorithms become competent for practical ap-
plications. In the past 10 years there have been
a few significant algorithmic improvements to
neural sequence modeling (attention and self-
attention). But much of the other research has
centered around simple applications of existing
technologies to new data and scaling of model
size to increase performance. It is worth thinking
about this shift from both a research perspective
and a business perspective to weigh the potential
benefits and drawbacks of where research efforts
are spent.

Conclusion
It will be interesting to see how sequence

modeling evolves in the future. There are many
applications to which transformers and self-
attention have yet to be applied. Additionally,
there could be improved neural network architec-
tures. Will a better network architecture replace
attention? Are there better ways to learn from
sequential data than with neural networks? Neural
networks are connectionist models – that is, they
operate on continuous data and continuous rela-
tionships between data. The myopic focus of the
2010s on connectionist models may prevent us
from seeing better sequence modeling solutions
that rely on symbolic modeling principles.

Another open question is how to learn from
only a few examples. For a human, a single
example of a sequence is often enough for them
to generalize and recognize other sequences of
that class. Is it possible for a network to attain
sample efficiency at a similar level? GPT-3 [27]
showed some results indicating that trained lan-
guage models can be used for one- or few-shot

learning, but it is worth investigating whether the
GPT-3 technique of pre-training accurately mod-
els the human one-shot learning experience. If
not, there could be better human-inspired methods
for learning to recognize sequences in a single
shot.

Neural sequence modeling has grown from
a proposed solution for modeling higher order
functions into an application-heavy field oriented
on real-world problems. Along the way, funda-
mental advances in sequence modeling network
architectures have converged on a self-attention
based network architecture with the power to
learn complex global dependencies over long se-
quences of text. These models have been enlarged
in number of parameters and trained with spe-
cialized hardware accelerators, elevating them to
human-like performance and beyond in a variety
of sequence modeling tasks.
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Bayesian Deep Learning for
Uncertainty Estimation

Bradley Hatch
Brigham Young University

Abstract—Deep learning has made tremendous strides towards artificial general intelligence
(AGI). These complex and hierarchical models eliminate much of the need for human engineered
model inputs, and are custom designed to ingest specific types of data (e.g. images and text).
Because neural networks have millions of parameters, they need large amounts of data from
which to learn. Without a sizable dataset these models can quickly overfit to the training data,
resulting in a model that is underspecified. To overcome this problem one can apply principles
from Bayesian inference to quantify a model’s uncertainty in its predictions, and thus revealing
what a model ”knows”. This paper is a review of the challenges and advances in identifying
epistemic uncertainty in neural networks.

POWERFUL MACHINE learning models have
revolutionized the pursuit of artificial general
intelligence (AGI), a subfield of machine learning
that has recently attracted much attention is deep
learning. An event that led to the awakening
of deep learning from its A.I. winter happened
in 2012 when Alex Krizhevsky won the Ima-
geNet image classification challenge [1] by a
significant margin. Krizhevsky used a innovative
convolutional neural network (CNN) [2] to model
the raw pixel values of the complex images.
There are several reasons why this seminal event
captured the eye of the media and machine
learning researches alike; one such reason was
that it represented a transition of the burden of
representing data to a mathematical model from
human experts, limited by their own experience
and imagination, to large, multi-layered models.
The complexity of images was not distilled to
a single vector of human engineered features.
Rather, they were left as raw pixel-valued inputs,
which placed the onus of feature importance on
the CNN. Many advancements in deep learning
have been made since 2012, but these models still
remain difficult to interpret, and consequently, are

often referred to as ”black-boxes”.

It is difficult to know what a neural network
does and does not know, or even how it represents
knowledge. Grant et al. [3] claim that a model’s
knowledge can be measured by how quickly it can
adapt to unseen tasks, rather than an embodiment
of task specific knowledge in its parameters, or
weights. The former emphasizes how a model
learns as opposed to the later, which focuses
on what a model has learned. Both philosophies
require data for a model to learn. In fact, deep
learning models require large quantities of data
in order to sufficiently define their millions of
parameters. With insufficient data, these models
can quickly overfit to data from which they learn,
which leads to poor predictions of future data.
This is a common occurrence in classification
tasks when using deep models. A model that
is underspecified by the available data will still
attempt to classify future data into a predeter-
mined category, even though its knowledge-base
is found wanting. This led to the need to quantify
the uncertainty in a model’s predictions.

Epistemic uncertainty is the uncertainty over
the set of parameters of a model. This uncertainty
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can be interpreted as the amount a model has
learned. Quantifying this can give an indication
of whether a model is well specified by the data.
It can also give it the ability to abstain from
classifying a data point if its uncertainty in that
prediction is high. With regards to the entire
dataset, high overall uncertainty signals a low
general knowledge of the task. This is a challenge
that is well suited for Bayesian inference to
answer.

THE IMPOSITION OF KNOWLEDGE
Before exploring Bayesian approaches to deep

learning, it necessary to describe model esti-
mation from two statistical perspectives: Maxi-
mum Likelihood Estimation (MLE) and Bayesian
Model Averaging (BMA), an application of
Bayesian inference. Both methods are used to
estimate a model’s unknown parameters, but they
approach this goal differently. MLE searches for
the single best set of parameters given the data
on hand, i.e. training data, while BMA averages
all possible sets of parameters weighted by each
set’s likelihood. This distinction is a necessary
step in order to illuminate the conceptual areas
where Bayesian principles can be applied, and
why they contain attributes fit for artificial general
intelligence. One such concept is the ability to
apply prior knowledge to decision making, and
being able to update that knowledge in light of
new information.

One can not fully avoid asserting human bias
and judgement when modeling data. For exam-
ple, feature engineering, the process of domain
experts extracting features from data, is a major
implicit bias placed on the data. Those features
are limited by the expertise and knowledge of
the human experts. Although deep learning does
not suffer as greatly from this limitation, even
the selection of which model to use is a form
of a priori information, albeit an implied one.
The following example is a high-level walk-
through of implied bias in model selection, and
the conceptual differences in the two methods.

30,000 Foot Example of Method Difference

A goal of statistics is to estimate unknown
parameters of a distribution, or model, using
information contained in a dataset. A beginning

approach one might take is to identify a dis-
tribution from a family of known distributions
(e.g. Normal, Uniform, Exponential, Beta) to best
model the training data D. This goal should not
be conflated with the task of inference, or using
an already trained model to predict new data. The
learning problem can be stated as trying to find
the best weights w for the function f(x;w). One
way to accomplish this is by finding the w that
maximizes the following distribution:

p(w|D) (1)

In words, the information contained in the train-
ing data D is used to help search for the most
likely set of unknown parameters w. It is a
distribution over all the possible combinations
of parameter values. Anything to the right of
the pipe (“|”) is information (e.g. data, models,
event occurrences) one has on hand to aid in the
search. Without it, all parameter combinations of
all values would have to be considered, an impos-
sible task indeed. The choice of p(), or model
approximating p(), depends on the assumptions
about the data. For example, say a dataset was
create by surveying 100 students and measuring
their height. If the Uniform distribution is chosen
to model these data, then the assumption is that
all heights are equally likely to appear in the
dataset. On the other hand, if the Exponential
distribution is selected, then it is assumed there
are exponentially more tall students than short
students on campus. Of course, in the end the
Normal distribution would prevail, implying that
most students will be close to average height with
very tall and very short students occurring less
often. By selecting the Normal distribution one
imposes an implicit bias to the modeling process.
This implicit bias is a form of knowledge, or
prior belief, that the researcher uses to select
the appropriate model. Now that a model has
been selected, its unknown parameters need to
be estimated.

MLE
The next step is to estimate the unknown

parameters of the Normal distribution, µ and σ2.
µ is the mean height of the student sample, while
σ2 is the variance of the heights in the sample.
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Substituting µ and σ2 for w in (1), the distribution
is as follows:

p(µ, σ2|D) (2)

This distribution covers all the possible values
of µ and σ2, given D. Some parameter values will
be more likely to explain the data than others,
and thus will have a higher joint probability.
For example, µ (mean height of students) is less
probable to be 100 feet tall than it is to be 5
feet tall. One way of solving this problem is
to reverse the order of information on hand and
search for the best µ and σ2 that make the data
most likely. This is called the likelihood function,
and maximizing it looks like this:

argmaxµ,σ2p(D|µ, σ2) (3)

This is Maximum Likelihood Estimation
(MLE). The result of MLE is point estimates, or
simply two scalar values, of the parameters. Point
estimates suggests a compression of all informa-
tion, including possible variations contained in D,
into a single value (or values). When optimizing
this equation it is common to work with the
natural logarithm of the likelihood function. This
is arguably the most popular loss function in
deep learning, the negative log-likelihood loss
(minimizing the negative of the log-likelihood
is the same as maximizing the log-likelihood as
in (3)), which is also an indication of a need
for probabilistic approaches. Both in this simple
example and in deep learning, MLE produces a
single estimate of the unknown parameters. In the
case of deep learning, the number of parameters
can number in the tens of millions.

Questions emerge when examining the con-
cept of point estimates. How certain are these
estimates? If the MLE for the data produces µ
= 5’6”, would not µ = 5’7”, or µ = 5’5.59203”
also be good choices? These questions are re-
lated to the epistemic uncertainty regarding the
parameters. Bayesian methods address epistemic
uncertainty.

THE BAYESIAN APPROACH
Instead of solving for the single best choice

of unknown parameters values, what if one could
examine how the parameters are distributed? This
shifting in perspective means the parameters are
now represented as random variables instead of
point estimates. The less randomness in these ran-
dom variables (sharply peaked distributions) the
more they look like point estimates. Philosophi-
cally, this approach starts from from a statistical
inability to know which estimates are the exact
answer, but assumes the distributions over the
parameters contain the correct setting. Equation
(1) is called the posterior probability distribution,
or simply the posterior. The posterior is a distribu-
tion over all possible sets of parameters that exist
given D. It is an amalgamation of all present data
and information, and can be approximated using
a combination of the sum and product rules of
probability to produces Bayes’ Theorem:

p(w|D) =
p(D|w)p(w)

p(D)
(4)

Unlike the likelihood function, this is a true
probability distribution. Next is a close exam-
ination of each part of Bayes Theorem, both
mathematically and conceptually.

Training data D
The current available data that will define

the parameters for a model. Typically, when one
declares a set of data as a training set it implies
that it is a good representation of all data related
to an experiment. If the task is classification then
D consists of (x, y) pairs where x is the input
data, and y is the associated label.

Unknown Parameters w
These are the unknown values of the model.

The training data will help mold and define an
appropriate set to govern the model. The more
training data, the better the parameters can be
approximated. Well chosen parameters give the
model power to make accurate inferences on
future data. The parameter search space is defined
by the selected model. In the example of student
heights, the search space is R2, because there
are only two parameters. But for a deep learning
model, the space can be as big as (or bigger than!)
R1e10.
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Prior Distribution p(w)

This is where any wisdom or information
about the parameter set is distilled into the pro-
cess of estimation before any learning from the
data has occurred. One might ask, what is known
about the problem? What is known about the pa-
rameter values? If the answer is, “Nothing”, then
one might set the prior as the Uniform distribu-
tion. Using the Uniform distribution implies that
all choices of parameter sets are equally probable.
But looking at the student height problem, the av-
erage height will not be negative, and possibly not
below 3’0”. This can be can asserted by stating
that the unknown parameter µ is distributed nor-
mally with mean = 5’5” and variance = 1’. After
the estimation of the posterior happens, more data
may become available. In this case, the posterior
distribution, which does not contain information
about the new data, becomes an excellent can-
didate to replace the previous prior distribution.
Thus, the prior distribution needs to look a lot
like the posterior distribution, i.e. have the same
functional form. When this happens, the prior and
posterior form a conjugate pair. If a poor choice
is made for the prior it can be overcome with an
increase in the amount of data. This principle is
encapsulated in the classic Bernstein–von Mises
theorem which states with enough data, and some
not too restricting conditions, the initial choice of
prior doesn’t matter as long there is enough data.

Marginalization Factor p(D)

Marginalization is at the heart of Bayesian
inference. The posterior is a conditional proba-
bility, meaning it is a probability distribution of a
random variable, but only after some other event
has happened. This will affect the distribution
of the posterior. For example, if a couple will
have two children, then the probability of both
children being girls is 1

4
, {(g,g), (g,b), (b,g),

(b,b)}. However, if the event of the first child’s
birth has occurred, then the probability of the
couple having two girls is 1

2
, {(g,g), (g,b)}. The

knowledge of the gender of the first child changes
the probability space from four equally possible
outcomes to two. Dividing by p(D) integrates
out, marginalizes, or normalizes the probability
distribution of the original problem.

Likelihood Function p(D|w)

The likelihood has already been introduced.
This estimates how likely the data is to occur
given a certain set of parameter values. The
likelihood function is not a probability function
as its integral does not always equal 1. A low
likelihood means the set of parameters is a poor
choice, while a high likelihood indicates a good
set of parameters.

Posterior Distribution p(w|D)

This is the distribution of all the possible sets
of unknown parameters w. It is learned from data,
and the goal of learning. If, for example, the
previously mentioned µ and σ2 of the Normal
distribution are the unknown parameters, then the
posterior contains knowledge of how µ and σ2 are
distributed after the model has seen the training
data. Again, this is not a point estimate of the
parameters, but a probabilistic distribution over
all possible sets of values of µ and σ2.

Predictive posterior distribution

Although the posterior is critically important,
the ultimate goal is to use the posterior to predict
future data. This is called the predictive posterior
distribution.

p(y|x∗, D) =

∫
p(y|x∗, w)p(w|D)dw, (5)

with x∗ as the new test data not included
in training the posterior. The predictive posterior
distribution is used for inference on new data.
Equation (5) says in order to predict the uncon-
ditional (not conditioned on any unknown param-
eters) label y of new data x∗, given x∗ and the
past training set D, integration (or summation)
over all possible sets of parameters multiplied by
their respective posterior probability is executed.
Simply, a weighted sum of all possible models
is calculated! This is known as Bayesian Model
Averaging (BMA).

The goal of Bayesian learning is to obtain the
predictive posterior distribution over all models,
by first solving for the posterior distribution for
all parameters. Interestingly, as more and more
data are obtained, the posterior in turn gets more
focused on a set of parameters until it finally
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collapses on a single set of point estimates. In
other words, with enough data the posterior ap-
proximation is equal to the MLE. Upon hearing
this, one might posit the question, “Are they really
different methods if they both eventually collapse
to the same answer?” Conceptually, yes, they
are different. Here is an example to show their
difference.

Good Ol’ Coin Flip
Modeling the probabilities of flips of a coin is

a well studied scenario, and mentioned in nearly
every entry level probability course. But it would
be unwise to allow this seemingly pedestrian
scenario to detract from its ability to illuminate
the beauty of Bayesian reasoning. The discussion
begins with the result of the first flip. Heads
(*pause for applause*). This is the only data
point thus far; one trial, one heads. Say the task
is to model the outcome of subsequent flips of
this coin. It is already evident that the model
will be underspecified by the data consisting of
one example. It is natural to be drawn toward
the Binomial distribution to model this problem.
The Binomial distribution has but one unknown
parameter that defines its distribution, λ. This
is how λ would be estimated from the MLE
perspective:

n = number of flips
m = number of heads
D = (y1, y2, . . . , yn), flip outcomes
λ = the unknown probability of getting heads

Recall, that MLE is not a probability distribu-
tion. Thus, one must use optimization methods to
maximize the likelihood. The likelihood function
for λ is as follows:

L(D) = p(D|λ,m) =

(
n

m

)
λn(1− λ)n−m,

(6)
and MLE optimization is stated like this:

MLE(D) = argmaxλp(D|m,λ) =
m

n
(7)

Substituting m=1 and n=1 results in the next
flip being heads with 100% probability. Does this

make sense? Of course not. The Bayesian per-
spective of marginalization affords more insight
to this problem.

Using the same likelihood in (6) the condi-
tional probability is set up to be proportional in
distribution (ignoring the marginalization factor
p(D))

p(λ|D) ∝ p(D|λ)p(λ) (8)

The posterior, p(λ|D), is modeled using a Bi-
nomial distribution. The prior distribution needs
to look like (i.e. have the same functional form)
as the posterior, because the posterior will replace
the prior before the coin is tossed again. The Beta
distribution fits that bill.

Beta(λ; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
λa−1(1− λ)b−1 (9)

The gamma functions are for normalization.
The only thing left is to choose values of a and
b. The uninformative, or “I don’t know”, choice
for a and b are 1 and 1, respectively. Here is the
resulting Prior:

p(λ) = Beta(λ; 1, 1) (10)

The posterior distribution with the unknown
parameter λ is proportionally equal to the Like-
lihood * Prior, or:

p(D|λ)Beta(λ; 1, 1) (11)

It is important to point out that BMA does not
egress from the world of probabilities as is the
case with MLE. This makes possible the analyti-
cal computation of the moments of the posterior.
To find a good value of λ the expectation (first
moment) of the posterior is taken:

E[λ|D] =
m+ a

n+ a+ b
(12)

Even with uninformed choices of a=1 and b=1
(equivalent to the Uniform distribution), the prob-
ability of the next flip being heads is 1+1

1+1+1
= 2

3
.
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Figure 1. Deterministic neural network with point estimates on the left, and Bayesian neural network with
distribution estimates on the right.)

HOW IS THIS RELATED TO
EPISTEMIC UNCERTAINTY?

Thus far, the discussion has been focused on
the treatment of parameters as random variables,
rather than exact values to be estimated, and the
conceptual differences between MLE and BMA.
The solution of MLE might look like this deter-
ministic distribution:

N(µ = 3, σ2 = 1.4), (13)

where as Bayesian inference might look more
like this:

N(µ = N(3, 1), σ2 = N(1.4, 0.1)) (14)

In (14) there is a distribution for each pa-
rameter. This means (14) is nondeterministic and
will produce different predictions for the same
data point. It is the variance in the predictions
that determines the uncertainty in the model. The
ability to calculate uncertainty is equivalent to
asking the model, “What do you know?” This
means that even though a data sample has a prob-
ability of 98% of belonging to class A, the model
might have a low certainty in that prediction, and
therefore it can abstain. Abstention in light of
uncertainty is better aligned with human decision
making than making deterministic decisions [4].
Using predefined distributions with only a few
parameters has greatly simplified this process.

What about a model with tens of millions, or
even billions, of parameters? For example, the
new GPT-3 language model [5] has a staggering
175 billion parameters. In the Bayesian paradigm
each of the 175 billion parameters would need
to have an estimated marginal distribution (see
Figure 1). How can one apply these principles
to neural networks? This highlights the need for
Bayesian deep learning.

THE CASE FOR BAYESIAN DEEP
LEARNING

Wilson et al. [6] claim “deep neural networks
are typically very underspecified by the avail-
able data, and will thus have diffuse likelihoods
p(D—parameters).” The implication of a diffuse
likelihood is that there will exist a wide variety
of plausible settings of parameters that can offer
an explanation of the data. Millions of training
samples still may not be enough to fully specify
the model, which means it will be unlikely the
likelihood and posterior will collapse to a single
set of parameters. In the previous coin flip exam-
ple, the expectation of the posterior was computed
directly with the ability to define all the different
parts that comprised the posterior. Unfortunately,
for most models marginalization is not analytic.
Markov Chain Monte Carlo (MCMC) and varia-
tional methods have been implemented to approx-
imate (5) in the neural network setting. Neal [7]
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Figure 2. Adding Dropout to training randomly deletes neurons with some probability p. (a) is the standard
training of a neural network. (b) shows dropout being applied to each layer.

attempted to solve the problem of integrating over
the posterior with a hybrid-MCMC, a process that
becomes increasingly complex with the increase
in the number of parameters. Others ([8], [9],
[10]) have also attempted to solve this colossal
and monumental challenge, but have come up
short. These attempts have led researchers to
investigate other approximate methods. Khan et
al. [11] use the optimizer to perturb network
weights during gradient evaluations as a variation
inference method to approximate uncertainty. A
MCMC approach evolved by viewing Dropout, a
popular way to regularizing and improving neural
network generalization, through a Bayesian lens.
It was cleverly coined Dropout MCMC, and is
discussed in detail in the next section.

Dropout MCMC
In the early years of the deep learning resur-

gence, a method called Dropout was developed
to prevent the multiple layers of feed-forward
neural networks from becoming dependent on
each other. Dropout randomly turns off, or simply
multiplies by 0, the output of each node in a layer
with probability p (see Figure 2).

Randomly deleting node outputs breaks any
co-adaptation, or dependency, between adjacent
layers. When training is complete, or at an inter-
mediary inference moment to check generaliza-
tion progress, Dropout is turned off and all the

weights are multiplied by 1−p. Training a neural
network with Dropout dramatically increased the
model’s ability to generalize to new data at the
cost of a slightly longer training session. The au-
thors’ motivating concept for Dropout was sexual
reproduction in that it “involves taking half the
genes of one parent and half of the other, adding
a very small amount of random mutation, and
combining them to produce an offspring”. They
posit a possible reason Dropout is so effective
is because “over the long term, the criterion for
natural selection may not be individual fitness
but rather mix-ability of genes.” A few years
later, Yarin Gal offered a Bayesian explanation
of Dropout’s effectiveness.

Gal et al. [12] noticed that each parameter is
dropped out with probability p, or in other words,
follows a Bernoulli distribution with probability
p of being 0. This is the same as “minimizing
the Kullback–Leibler divergence between an ap-
proximate distribution and the posterior of a deep
Gaussian process (marginalised over its finite
rank covariance function parameters).” Minimiz-
ing the Kullback–Leibler divergence is a varia-
tional inference method that aims to estimate an
unknown distribution (the neural network) with a
simpler known distribution (Bernoulli). Viewing
Dropout in this manner means the model now
has a means of calculating uncertainty. For ex-
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ample, in classification Gal suggests obtaining an
uncertainty estimate by a Monte Carlo estimate.
This is accomplished at inference time by select-
ing a single sample and passing it through the
network, but leaving Dropout active. Each time
the sample passes through the model, different
nodes are dropped out, thus producing a different
category probability distribution. If the example
is forward propagated through the network, say,
100 times producing 100 different predictions.
To obtain an uncertainty measure for that single
example one only needs to examine the variance
of the 100 predictions. The higher the variance,
the more uncertain the model is about the class
prediction. The setup is different across neural
network architectures (e.g. Dropout is different
for CNNs than it is for RNNs), but the underlying
concept is the same. This probabilistic view of
Dropout makes it possible to calculate uncertainty
in modern neural network architectures.

CONCLUSION
There are challenges to applying Bayesian

principles to deep models: the posterior topology
is difficult to navigate for models with millions
of parameters, all prior information cannot be
encoded as a joint distribution, and it may not
be possible to view every parameter as a ran-
dom variable. Despite these challenges, incred-
ible advancements have been made that allow
researchers and practitioners to investigate what
their models have learned. The ability to quantify
uncertainty is truly a step towards AGI.

REFERENCES
1. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Im-

age Database,” in CVPR09, 2009.

2. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

in Advances in Neural Information Processing Systems

25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, eds.), pp. 1097–1105, Curran Associates,

Inc., 2012.

3. E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths,

“Recasting gradient-based meta-learning as hierarchi-

cal bayes,” 2018.

4. L. Ziyin, Z. Wang, P. P. Liang, R. Salakhutdinov, L.-P.

Morency, and M. Ueda, “Deep gamblers: Learning to

abstain with portfolio theory,” 2019.
5. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-

plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,

A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,

S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,

A. Radford, I. Sutskever, and D. Amodei, “Language

models are few-shot learners,” 2020.

6. A. G. Wilson, “The case for bayesian deep learning,”

2020.

7. R. M. Neal, Bayesian learning for neural networks,

vol. 118. Springer Science & Business Media, 2012.

8. J. Denker and Y. LeCun, “Transforming neural-net out-

put levels to probability distributions,” in Advances in

Neural Information Processing Systems (R. P. Lipp-

mann, J. Moody, and D. Touretzky, eds.), vol. 3, pp. 853–

859, Morgan-Kaufmann, 1991.

9. G. E. Hinton and D. v. Camp, “Keeping neural net-

works simple by minimizing the description length of the

weights,” 1293.

10. A. Graves, “Practical variational inference for neural

networks,” in Advances in Neural Information Process-

ing Systems (J. Shawe-Taylor, R. Zemel, P. Bartlett,

F. Pereira, and K. Q. Weinberger, eds.), vol. 24,

pp. 2348–2356, Curran Associates, Inc., 2011.

11. M. E. Khan, D. Nielsen, V. Tangkaratt, W. Lin, Y. Gal,

and A. Srivastava, “Fast and scalable bayesian deep

learning by weight-perturbation in adam,” 2018.

12. Y. Gal and Z. Ghahramani, “Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning,” 2016.

Bradley Hatch is a Ph.D.
student who previously earned
a B.S. degree in mathemat-
ics, and a M.S. in statistics.
He is currently researching ap-
plications of information theory
in neural networks, specifically

identifying and amplifying fine-grain differences be-
tween cells in microscopic cytology images. Bradley
is also interested in the intersection of physics, deep
learning, Bayesian inference, and financial markets.
In his spare time, Bradley enjoys rock climbing, snow-
boarding, spending time with his family, and counting
by 5s.

64 THREADS



Data Analytics in Sports
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Abstract—Data analytics is a major part of businesses and sports teams alike. One of the most
important tools used in sports analytics is the machine learning method Random Forest. The
Random Forest is built from many Decision Trees, which in turn utilize the concept of entropy.
Entropy was first introduced by Claude Shannon in his 1948 paper A Mathematical Theory of
Communication, in which Shannon establishes many important concepts and theorems, such as
bits and the Shannon-Hartley theorem. In the 1960s, ’70s, and ’80s Decision Trees started
emerging as the result of the work by Ross Quinlan, Leo Breiman, and others. Tin Kam Ho
pioneered the first Random Forest in the 1990s, and it has since taken over as one of the most
popular and useful machine learning algorithms. Applications of the Random Forest are tools
used to monitor and improve performance, as well as tools used to predict outcomes.

DATA ANALYTICS has grown to more or
less control our every move. From Netflix’s rec-
ommended movies to Amazon’s recommended
products, almost anything you see online is the
result of data analytics. By analyzing the patterns
and habits of their customers, companies are able
to predict what movies, books, advertisements, or
other goods they have to offer might generate in-
terest as well. Data analytics is, however, not only
something multi-billion-dollar companies use to
make even more money [1]. It plays a pivotal
role in almost every major sport, especially in
team sports. Players and coaches spend hours
watching their next opponent’s previous match-
ups to find their weaknesses in order to exploit
them and gain a competitive advantage–although,
as demonstrated in the 2020 World Series, it
might not always go your way. While in the lead,
the Tampa Bay Rays decided to pull their pitcher,
who was playing very well, because of how they
guessed he was going to start doing, based on
their analytics [2]. The Rays ended up losing that
game, and the whole series, to the Los Angeles
Dodgers.

Predicting your opponents’ moves is not the
only way to use data analytics in sports. There
are ways to analyze your own performance from

Figure 1. Analytics in football [3].

a technical standpoint to help improve it. What
that means is that by using tools such as computer
vision and inertial measurement units (IMUs),
you can analyze the arm motion of a tennis
player hitting the ball [4], the arm motion of a
basketball player shooting the ball [5], and the
running motion of a runner [6]. Athletes can then
make changes based on that data to improve their
performance. The way this data transforms from
meaningless values to something concrete and
usable is through a machine learning algorithm,
such as Random Forest.
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Figure 2. A simple Decision Tree and the data plot that was used to generate it [7].

Random Forest is an ensemble learning
method, which means that it is a collection or
grouping of other learning methods. In this case,
however, there is only one other method: the
Decision Tree. Basically, a Random Forest takes
a user-specifiable amount of Decision Trees and
combines them to get a result that is ideally better
than what a single Decision Tree could achieve
on its own. A Random Forest was first proposed
as an improvement over single Decision Trees by
Tin Kam Ho in 1995 [8], making it a fairly new
algorithm. Random Forests are very easy to use,
since they require little to no configuration. That,
along with how accurate they are, is surely one
of the reasons they are among the most popular
machine learning algorithms [9].

Random Forest is a great algorithm, but
it would never have come to be if it were not
for the Decision Tree. Figure 2 shows the basic
functionality of a Decision Tree. The origins
of the Decision Tree are unclear: multiple peo-
ple published papers about tree-like algorithms
around the same time, but they are all slightly
different [10]. According to [10], the “first regres-

sion tree algorithm” was published by Morgan &
Sonquist [11] in 1963. This Automatic Interac-
tion Detection (AID) algorithm is a very simple
binary tree algorithm that can estimate a regres-
sion function. An improvement of that, THeta
AID–or THAID–was introduced by Messenger &
Mandell in 1972 [12]. However, these algorithms
were fairly simple and not quite robust enough for
widespread use [10]. In the 1980s, three separate
and more advanced classifiers were conceived.
CHAID by Kass in 1980 [13], CART by Breiman
in 1984 [14], and ID3 by Quinlan in 1986 [15].
All three of these are still in use to this day,
which shows the significant improvement from
the earlier algorithms. There is one important
difference that separates ID3 from the rest, which
is that it utilizes the concept of entropy.

Entropy is an important idea that comes
from the field of information theory. It was first
introduced by Claude Shannon in his 1948 paper
A Mathematical Theory of Communication [16],
which is one of the most important mathematical
papers of the last century. Not only did Shannon
come up with the formula for entropy as it per-
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tains to information theory, but he also coined the
term “bit” and laid the foundation for the whole
field of information theory. Entropy, or the level
of uncertainty of an outcome, is the fundamental
piece of math that made everything from Decision
Trees to data analytics in sports possible.

Great Minds Convene at Bell Labs
In [16], Shannon set out to extend the

theories Harry Nyquist and R. V. L. Hartley had
proposed in their own work a couple decades
earlier [17], [18], [19]. All three men worked
at the Bell Laboratories simultaneously at some
point, which surely led to some fruitful exchang-
ing of ideas. Nyquist had shown in [18] that the
minimum sampling rate required to prevent loss
of information is only 2B, if B represents the
bandwidth signal. Conversely, it can also be used
to show that the number of pulses that a telegraph
channel can handle at once is limited to 2B. If fp
is the pulse frequency, or number of pulses per
time unit, then

fp ≤ 2B.

This later became known as the Nyquist rate, and
it was one of the important ideas Shannon covered
in his paper. Hartley, on the other hand, implied
in [19] that if the amplitude of a signal is within
[−A...A] volts and ±∆V is the precision of the
receiving machine in volts, then the maximum
amount of pulses is

M = 1 +
A

∆V
.

Then, by letting the amount of information, or
number of bits, per pulse be denoted by log2(M),
the line rate R–the amount of information being
transferred–can be calculated using this formula:

R = fplog2(M).

Finally, by using the Nyquist rate, this equation
could be transformed into

R ≤ 2Blog2(M).

This equation came to be known as Hartley’s law,
the second piece that contributed to Shannon’s
work in [16].

Using these findings as a basis, Shannon
was able to construct the Shannon-Hartley the-
orem

C = Blog2(1 +
S

N
),

Figure 3. Claude Shannon [20].

where C is the channel capacity and S
N

is the
signal-to-noise ratio. As you can see, this is
almost identical to Hartley’s law. Shannon was
able to prove this more precise version of that
law in [16]. However, even this theorem has its
faults. The channel is what is called an “Additive
White Gaussian Noise” channel, meaning that it
is simplified to include the noise as part of the
signal.

Shannon finally completes the development
process of this idea when he adds entropy as
part of the equation. In his noisy-channel coding
theorem

R(pb) =
C

1−H2(pb)
,

he states that the rate is affected by both the
channel capacity and the noise. In the equation,
C and R are still the channel capacity and the
line rate, respectively, pb is the probability of bit
error, and H2 is the entropy function. Shannon
defines entropy in [16] as

H = −K
n∑

i=1

pilog(pi),

December 2020 67



Data Analytics in Sports

Figure 4. Diagram of a communication system from [16].

although K is merely a positive constant used
to convert between units, so it can simply be 1
in most cases. The equation is taking the negative
sum of the probability of each outcome multiplied
by the logarithm of that probability. In the noisy-
channel coding theorem, we can see that Shannon
uses a special entropy function H2. It is called the
binary entropy function, and all it means is that
there are only two possible outcomes (binary),
and since pb is the probability of one of them,
the probability of the other one must be (1−pb).
For clarity, here is H2 written out:

H2 = −plog(p)− (1− p)log(1− p).

From here, the field of information theory
took off, and Shannon became the leading expert
in it. He continued to work at Bell Labs until he
joined the faculty of MIT, where he had received
both his MS and PhD from, in 1956.

Information Gain in Decision Trees
Fifteen years after Shannon’s groundbreak-

ing paper, James Morgan and John Sonquist
developed AID, the first algorithm resembling
the modern Decision Tree [10]. It could handle
both numerical and categorical values, behaving
slightly differently in each case. If the variable
X is numerical, the algorithm uses a comparison
X ≤ c, whereas for categorical variables the
comparison is X ∈ A. A is a set of values and c
is a specific value with significance for the task
at hand. AID starts at a root node and splits the
data at each node using one of the comparison
methods above. This will result in a binary tree.
The algorithm stops when the nodes reach an

impurity level that is less than a predetermined
amount, compared to the impurity of the root
node [10]. Impurity is calculated using a deviation
formula that is not relevant to this paper. THAID
by Robert Messenger and Lewis Mandell allows
for classification, as opposed to simply estimating
a regression function like AID does. It also uses
a slightly different splitting technique, but once
again, it is beyond the scope of interest for our
purposes. As mentioned before, these algorithms
did not generate a lot of interest at the time, with
AID especially receiving criticism for overfitting
[10].

CHAID (CHi-squared AID), proposed by
Gordon Kass in 1980, is a lot more robust than
both of the earlier algorithms. It can split nodes
into more than just two child nodes, and splitting
is done with the help of a more sophisticated
test called a Bonferroni-adjusted significance test.
Another important step was made in 1984, when
Leo Breiman came up with Classification And
Regression Trees, or CART. It is reminiscent of
AID and THAID in the sense that it uses a binary
tree approach, but there are some added methods
that combat the tendency to overfit. There are also
ways to deal with missing values for variables.
These two methods are still used today, but they
are missing one piece that is important for our
story: entropy.

The first person to include entropy in their
Decision Trees was Ross Quinlan, who published
his ID3 algorithm in 1986. The Iterative Di-
chotomiser 3 uses the same tree approach we
are very familiar with now, but it uses entropy
to decide how to split the nodes. It starts at the
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root node with a set S, and at each point, it
calculates the entropy of each unused attribute
of the set. The set is then partitioned by the
element that minimizes the entropy, which, con-
versely, maximizes information gain. Since the
idea is to gain the most information about the
set, and entropy can be thought of as uncertainty,
minimizing uncertainty naturally leads to maxi-
mizing information gain. Quinlan improved the
ID3 algorithm even further in his C4.5 and C5.0
algorithms, making it faster and more robust.

The important feature in the ID3 and its
successors is information gain. The way it works
is that the entropy of the potential new state is
subtracted from the entropy of the current state.
This can be put as

IG(T |a) = H(T )−H(T |a),

where T |a stands for the conditional new entropy
value of T given the value of a, IG stands
for information gain, and H stands for entropy.
As mentioned above, Decision Trees in the ID3
family attempt to create the tree by maximizing
information gain with each split. This works well
in practice, but there are some drawbacks. For ex-
ample, this method is a greedy algorithm. Greedy
algorithms are known for achieving fairly good,
but not always perfect, results quickly, meaning
that sometimes there are better results that they
miss. This applies to Decision Trees as well:
because information gain is maximized at each
step, the algorithm does not look ahead to see if
making a suboptimal split at a certain stage results
in a great split a couple steps later. By not doing
so, the speed of the algorithm is greatly enhanced.
However, even though Decision Trees achieved
impressive results, only guaranteeing local optima
left something to be desired. A certain Tin Kam
Ho decided that it was not good enough.

Random Forests
In 1995, American computer scientist Tin

Kam Ho published her paper on what she called
“random decision forests” [8]. This was the first
appearance of anything resembling a Random
Forest in the literature. Surprisingly–or perhaps
not–she was working at Bell Labs at the time [21].
In [8], she demonstrates how adding Decision
Trees increases the accuracy of the result, as

shown in Figure 5. As you can see, adding
a new tree increases the accuracy every time,
except when going from 1 tree to 2 trees. Ho
attributes this phenomenon to ambiguity when
combining the trees. The increase seems to be
linear, although one could argue that there is
some plateauing going on, depending on the
algorithm. The latest version of the scikit-learn
RandomForestClassifier [22] uses 100 trees by
default–upgrading from 10, the previous default–
so it does in fact seem like adding more trees
keeps on giving better and better results. At some
point the computational costs outweigh the minor
improvement in accuracy.

In order to combine the different trees in the
forest, Ho decided to use a linear discriminant.
She credits Eugene Kleinberg with the idea–
which makes sense, given that she got her PhD
from State University of New York at Buffalo,
where Kleinberg happened to be a math professor
[21], [24]. I think it is fair to assume that they
knew each other, which then led to this collab-
oration. The function Ho uses to combine the
decision trees is called a stochastic discrimination
function by Kleinberg. Here is how it works:
if there are t trees, a point x is assigned to a
terminal node vj(x) when descending down a
tree, and the probability of x belonging to class
c (c = 1, ..., n) is

P (c|vj(x)) =
P (c, vj(x))∑n

i=1 P (ci, vj(x))
,

which denotes the ratio between all class c points
and all points assigned to vj(x). The actual

Figure 5. Algorithm accuracy per number of Decision
Trees [8].

December 2020 69



Data Analytics in Sports

discrimination function, gc(x)), is defined as fol-
lows:

gc(x) =
1

t

t∑
j=1

P (c|vj(x)).

The goal is to assign x to the class c for which
gc(x)) is maximized. These functions are used to
combine all the trees in an optimal way, which,
as Ho showed in [8], leads the better results than
just a single tree can achieve on its own.

How are the different trees created for use
in the forest? As mentioned earlier, Decision
Trees are generated using a greedy algorithm.
That means that for the same input data, the
output (i.e., the tree) will always be the same–
the optimal output. Obviously creating the same
tree n number of times will not increase the
accuracy. This is where “random” comes in to
play. Ho explains that the trees are created by
taking random subspaces of the original data, or
features. Since the random samples are all built
using valid features, they will be accurate when
tested against the training data. However, the
differences arise when trying to generalize to data
that has not been seen before. Ho also notes in [8]
that there are an exponential number of subspaces
to choose from, so randomization should produce
completely different trees. Additionally, it means
that the number of trees has to be quite large for
any problems to occur.

Ho’s “random decision forests” were a great
foundation that Leo Breiman–the same person
who came up with CART–further improved in

[25]. Breiman used a method called “bagging”
that he had previously published about [26] to
combine the trees. Bagging, or bootstrap aggre-
gating, is a way to generate multiple versions of
a predictor, a tree in this case, and then use them
to create one improved predictor. This obviously
sounds very similar to the way Ho combined
multiple trees to create an improved version of
them: the forest. This is how Breiman describes
the bagging process in [26]: given a learning set
L with data {(yn, xn), n = 1, ..., N}, where xn

is the input and yn is the corresponding label
or output, a predictor ϕ(x, L) can be formed. A
learning set is equivalent to a tree in Ho’s version.
If we now form a sequence of k predictors {Lk}
from sets similar to L, we get a sequence of
predictors {ϕ(x, Lk)}. These could be combined
using an averaging approach, or something sim-
ilar to Ho’s stochastic discrimination; however,
Breiman suggests something different. Since we
rarely have multiple similar dataset we could use
to create learning sets, we instead take multi-
ple bootstrap samples L(B) of L, thus forming
{ϕ(x, L(B))}.

Taking bootstrap samples means taking ran-
dom samples from L, with replacement. That
means that even if a certain element or feature
xn, yn is already in the new set, it can be chosen
again.

Once we have formed {ϕ(x, L(B))}, there
are two possible approaches, depending on the
type of data we are dealing with. If we are

Figure 6. Forming a bagging predictor [23].
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performing a regression, we can form the bagging
predictor as follows:

ϕB(x) = avBϕ(x, L(B)),

which is just a different way of saying that we
are taking the average of the predictions. A more
readable formula for this might be

ϕB(x) =
1

B

B∑
b=1

ϕ(x, L(B)).

On the other hand, if we are doing classification,
ϕB(x) can be formed simply by a plurality vote,
meaning that of all sets L(B), whichever output
x gets mapped to most often is deemed the
correct one. Figure 6 illustrates the bootstrapping
process.

Breiman introduced an idea in [25] called
the “out-of-bag estimate,” which is used to esti-
mate the generalization error. For every (yn, xn)
in the learning set, take each Ln that does not
include (yn, xn) in it and combine them to form
an out-of-bag classifier. The error rate of that
classifier on the learning set is the out-of-bag
estimate for the generalization error of the bagged
predictor. Out-of-bag estimates can be used dur-
ing runtime to evaluate how well the classifier is
going to do. They are especially useful when the
learning set is small, since they can be calculated
without setting aside a portion of the data to
be used for validation, which means that the
accuracy does not suffer from having too small
of a sample size.

Another important concept introduced in
[25] is the idea of variable importance. Using the
out-of-bag technique described above, in addition
to some additional permutations to create new
tests, the accuracy of the out-of-bag classifica-
tions for each xn can be interpreted as variable
importance. This is important because in some
cases there could be hundreds of features, but
only a handful of them are actually important
when deciding how to classify an input. Figure
7 is the variable importance from the results of
voting data, as reported in [25]. As we can see,
variable 4, which correlates to the fourth topic
that was voted on, is clearly significantly more
important than any of the other variables. As a
result, a classifier built based only on variable
4 would be almost, if not just as, accurate as
one based on all the variables. Being able to
reduce the number of features used for classifi-
cation shortens the time needed for training and
for making predictions [27]. This can make a
major difference when the number of features is
reduced from thousands to dozens, or even just
to hundreds.

Shannon’s influence can be seen in the idea
of variable importance. Entropy, and information
gain, which is derived from it, is all about mea-
suring how much a certain attribute matters. The
only difference between them is that entropy is
used to decide how to make a split in a Decision
Tree, whereas variable importance is used to
decide which features to keep. In both cases, the
attribute that yields the most information prevails.

Figure 7. Variable importance in voting data [25].
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After Breiman had introduced his Random
Forest method using bagging, Tin Kam Ho com-
pared the performance of their classifiers. She
found that both versions are likely to perform
better than a single tree, especially when the
feature space is complex (it is hard to distinguish
between features) [28]. In simple cases, a single
Decision Tree performed as well as the ensemble
forests did. This is most certainly due to the fact
that adding more trees that will end up doing
more or less the same thing as the single tree
does not help. As far as the performance differ-
ences between the two types of forests, Breiman’s
bagging classifiers seemed to fair better when the
data was sparse and class boundaries were nonlin-
ear, whereas Ho’s random subspace classifiers did
better when the class boundaries were smoother.
A class boundary is the boundary between two
areas such that if an input x is on one side of the
boundary it will be classified as y1, and if it is
on the other side it will be classified as y2, for
instance.

What about Quinlan’s ID3 and C4.5 clas-
sifiers? Breiman naturally uses his own CART
method when building Random Forests, and Ho
seems to be using it as well, although she does
not mention it explicitly. However, given the fact
that she discusses the performance of a Random
Forest built specifically from Decision Trees us-
ing C4.5 in [29], it is plausible to assume that her
prior work was not utilizing them. Ho discovered
in her tests that the C4.5 Random Forest utilizing
her random subspace method performed better
than a single C4.5 Decision Tree, a Random
Forest that used bagging, and a Random Forest
that used boosting. It was about 2% more accurate
than any other method, regardless of how many
trees were being used.

Quinlan personally seems to only have
touched on the subject of Random Forests. In
[30], he talks about improving the performance of
C4.5 by using bagging, which essentially means
that he built a Random Forest. Better accuracy is
exactly what we know to expect by now.

Applications in Sports

As I mentioned earlier in the paper, machine
learning algorithms, Random Forest included, are

becoming increasingly popular among sports an-
alysts. Most applications seem to fall under either
improving performance or predicting outcomes.

The studies I mentioned early on are all
about improving performance. IMUs typically
include an accelerometer, a magnetometer, and a
gyroscope. That means that an IMU can measure
linear acceleration, angular velocity, and orienta-
tion. To put it simply, an IMU can always tell you
if it is tilted, rotated, or moved in any direction.
Smartphones have IMUs in them, that is how
they know when you turn your phone sideways.
Since an IMU can provide so much positional
information, it is easy to track the movement of
an arm, for example. Thus, in [4], for instance, the
researchers were able to analyze the type of stroke
(backhand, forehand, serve) that was performed.
When compared to a gold standard, this could
lead to being able to determine whether or not
someone’s technique is proper. The researchers
in [5] came to the same conclusion and claim to
have started work on such an application already.

The other aspect of popular Random Forest
usage is predicting scores and other events. It
seems like there is an increased interest in trying
to predict certain events in sports, which could
explain the number of mechanisms created to do
so. This interest, in turn, can be explained by the
growth of the sports betting industry. Ever since
the ban restricting sports betting to only Nevada
was lifted in 2018, over 20 billion dollars’ worth
of bets have been made in the U.S. alone [31].
Worldwide, the value of the sports betting market
is over 85 billion dollars, and it is anticipated to
grow even further [32]. Therefore, there is a lot
of incentive to predict outcomes correctly. Most
fans of the National Football League (NFL) have
probably seen a win probability estimate on the
screen while watching a game. There are a variety
of different models that could be used to predict
the outcome of a game, one of which is [33].
Lock and Nettleton were able to come up with a
Random Forest predictor that can fairly accurately
determine the win probability at each point. The
mean squared error (MSE) of the predictor is
0.156, which typically might not be a great score,
but when dealing with this much unpredictability,
it is acceptable. The predictions naturally get
better as the games go on, since there is more data
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available and fewer surprising things can happen
with the time ticking away.

The NFL is not the only league whose
games garner enough interest to warrant the cre-
ation of a win probability predictor. In [34], a
Random Forest was combined with a Poisson re-
gression to create what the authors call a ”hybrid
random forest” predictor for soccer games. They
used it to predict the outcome of the games in the
2018 World Cup. It was trained on the data from
all the World Cups from 2002-2014, as well as
other matches by the national teams from 2010 to
2018. The hybrid model had a prediction accuracy
of 0.609, which, according to the authors, would
have allowed for about a $70 profit when betting
$100. Thus, we can see that predictors can be a
useful gambling tool in many sports, especially
when powered by a Random Forest.

Modern Day

Claude Shannon became one of the most
influential mathematicians and engineers of the
20th century. Information theory is a vital part
of intelligence efforts, cryptography, cybernetics,
seismic exploration, and even gambling. One of
his side projects, a mechanical mouse called
Theseus that was able to learn the layout of a
labyrinth and exit no matter where it was placed,
became one of the pioneer studies in artificial
intelligence. Shannon also made highly advanced
contributions that have to do with the complexity
of the game of chess. Unfortunately, he later
developed Alzheimer’s, which he fought for a few
years before passing away in 2001.

Leo Breiman’s Random Forest became the
official Random Forest when he trademarked it
in 2005, shortly before his death at the age of
77. Python, the most popular language among
computer scientists for machine learning pur-
poses, has a library called scikit-learn that in-
cludes just about any tool you could imagine.
As mentioned earlier in the paper, that Random
Forest is based on Breiman’s CART and bagging
methods. However, as demonstrated in [8], [28],
[29], and [30], there are alternative solutions, if
the built-in method is not ideal for your purposes.
The same goes for the scikit-learn implementation
of the Decision Tree.

Ross Quinlan has remained a part of the ma-
chine learning community ever since the 1980s;
he is currently in charge of a company he founded
in 1997 called RuleQuest [35]. RuleQuest is an
Australian, like its founder, company that pro-
vides high-quality data mining tools.

Tin Kam Ho worked at Bells Labs for 22
years, focusing on statistics and artificial intel-
ligence, as well as telecommunications–naturally
[21]. She then transitioned to IBM Watson, where
she remains to this day. Her work includes se-
mantic analysis of natural languages, as well as
analysis of healthcare solutions.

Thanks to the work of all of these people,
as well as that of countless others, both aspiring
computer scientists like myself and professional
data analysts can use highly developed machine
learning algorithms to perform amazing tasks
that Shannon might not have even been able to
imagine when he set everything in motion almost
80 years ago.

Conclusion

Decision Trees and Random Forests are
vital pieces in the world of machine learning
and data analytics. A major element of it is
the concept of information gain, which in turn
builds on Claude Shannon’s entropy. Decision
Trees emerged slowly in the 1980s, after initial
prototypes in the ’60s and ’70s. Decision Trees
evolved into Random Forests in the mid-1990s,
and both algorithms are household names among
statisticians, computer scientists, data analysts,
and many others. Random Forests can be used
effectively when building tools to both improve
and predict performances, making it a versatile
and reliable component in data analytics.
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Ego2Hands: A Dataset for
Egocentric Two-hand
Segmentation and Detection

Alex Lin
Brigham Young University

Abstract—Hand segmentation and detection in truly unconstrained RGB-based setting is
important for many applications. However, existing datasets are far from sufficient both in terms
of size and variety due to the infeasibility of manual annotation of large amounts of
segmentation and detection data. As a result, current methods are limited by many underlying
assumptions such as constrained environment, consistent skin color and lighting. In this work,
we present a large-scale RGB-based egocentric hand segmentation/detection dataset that is
automatically annotated and a color-invariant compositing-based data generation technique
capable of creating unlimited training data with variety. For quantitative analysis, we manually
annotated an evaluation set that significantly exceeds existing benchmarks in quantity, diversity
and annotation accuracy. We show that our dataset and training technique can produce models
that generalize to unseen environments without domain adaptation. We introduce the
Convolutional Segmentation Machine (CSM) as an architecture that better balances accuracy,
size and speed and provide thorough analysis on the performance of state-of-the-art models on
the Ego2Hands dataset.

WITH THE RAPID GROWING usage of wear-
able technologies generating massive volumes
of egocentric image data [1], [2], [3], [4], the
ability for machines to understand human hands
becomes crucial for applications such as human-
computer interaction (HCI), activity logging, ges-
ture/sign language recognition and VR/AR since
the hands play a central role in human activities
and behavior. Consequently, hand detection and
segmentation are fundamental in areas such as
2D, 3D hand pose estimation [5], [6], [7] and
gesture recognition [8], [9]. However, hand seg-
mentation on images in the wild is extremely
challenging due to numerous factors: vastness
of the color space, different skin color/texture,
complex background noise, motion blur, lighting
type/color, shadow features, speed and model

size requirement, etc. As a result, existing color-
based approaches can only perform in constrained
environments with proper lighting and skin color
consistent with the training data. These limita-
tions are largely due to the lack of annotated
segmentation data, a common limiting factor for
segmentation tasks because manual annotation is
oftentimes required but infeasible for large-scale
data generation.

In this work, we aim to push the boundary
for the task of real-time egocentric two-hand
segmentation and detection on images in the wild
(Fig. 1). Since hand segmentation and detection
are highly correlated and both imperative for
subsequent applications, we find it natural to
tackle both tasks simultaneously.

We first address the issue of the lack of anno-
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Figure 1: Our proposed dataset and training
scheme enables domain generalization for two-
hand segmentation and detection. Given an image
with new environment and hands not present in
the training data (top), the trained models can pro-
vide accurate segmentation and detection results
for both hands with free interaction (bottom).

tated data. In general, real-world RGB data with
segmentation ground truth is very labor-intensive
to annotate. For this reason, existing hand seg-
mentation datasets [10], [11], [8], [9], [12], [13]
lack the quantity and sufficient variety necessary
for learning-based approaches. Although syn-
thetic data [7] with perfect ground truth can be
generated with little cost, methods trained on
synthetic image data cannot be directly applied
on real-world data as Convolutional Neural Net-
works (CNN) are sensitive to even small tex-
tural differences between domains. We propose
a novel segmentation data collection method for
egocentric hands that can automatically annotate
massive amount of data for only the right hand
in a green screen setting, and a corresponding
compositing-based data generation technique that
can generate unlimited unique training instances
by combination of randomly selected right hands
and left hands generated using horizontal flip. In
order to develop a color-invariant approach, we
explore the grayscale image space coupled with
edge maps as input space and show successful
generalization to unseen environments. This data
generation method can push segmentation models

beyond the limitation of a fixed-sized training set
and evaluation set and enable models to produce
accurate segmentation and detection results in
unseen environments without domain adaptation,
which can also be easily applied to further im-
prove model accuracy for specific environments.

We introduce Ego2Hands that includes a train-
ing set with ∼180,000 unique right hand in-
stances and an evaluation set with 2,000 manually
annotated frames from diverse video sequences.
In-depth comparison between Ego2Hands and
previous benchmark datasets shows the superi-
ority of our dataset in quantity and diversity.
For quantitative analysis, we provide compre-
hensive comparison between the state-of-the-art
approaches on our dataset and find that existing
architectures lack the proper balance of accuracy,
model size and speed, which is necessary for
real-world applications. To this end, we introduce
a well-balanced architecture, the Convolutional
Segmentation Machine, where the 1st stage out-
puts fast and accurate prediction and the 2nd stage
provides refinement with increased resolution.

Influential Works

Convolutional Neural Networks

Similar to standard neural networks, inspired
by the biological process of the animal visual
cortex, the concept of using receptive fields as
neurons that respond to visual features by con-
volution lays the foundation of modern computer
vision, which is essential for color-based recog-
nition tasks such as hand segmentation/detection.

In 1980, Kunihiko Fukushima [14] in
”neocognitron” first introduced the convolutional
layer with receptive fields covering a patch of
the previous layer as well as the downsampling
layer. The idea later led to Yann LeCun [15] de-
veloping an approach that uses back-propagation
to automatically learn the values of receptive
fields from data in 1988. LeCun also introduced
a convolutional network named LeNet that is
capable of classifying 32 × 32 digits. However,
limited by data scarcity and computational power,
CNNs were not able to scale to more complicated
visual tasks at the time.

With the development of graphics processing
units (GPUs) in the 2000s, training and evaluation
of standard neural networks become significantly
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accelerated. In 2006, Chellapilla et al. [16] intro-
duced the first CNN with GPU-implementation
for document processing.

Image-based data was also becoming more
abundant as large-scale datasets such as Ima-
geNet [17] were introduced, solving one of the
biggest issue for deep convolutional networks
that require large amount of training data. In
2012, as a CNN-based architecture AlexNet [18]
significantly outperformed previous methods on
the benchmark dataset of ImageNet, deep con-
volutional neural networks became the state-of-
the-art approach for vision-based tasks. In 2016,
He et al. [19] introduced a variant of CNN that
contains residual layers with skip connections
that significantly resolves the issue of vanishing
gradient for deep neural networks, allowing net-
work with over 1,000 layers to still converge. The
proposed Resnet architectures achieved top re-
sults on ImageNet [17] for image classification as
well as COCO [20] for object segmentation and
detection. Our proposed architecture also utilizes
residual layers for convolution and deconvolution.

Hand Segmentation
Depth-based methods Early works [21], [22],
[23] utilized Randomized Decision Forests (RDF)
on depth images to obtain the hand segmentation,
which allows multicore parallelization with fast
inference time suitable for real-time applications.
[5] later introduced a Fully Convolutional Net-
work (FCN) that segments the left and right
hand for fast tracking of two interacting hands
in egocentric viewpoint. Similarly, [24] proposed
a hybrid encoder-decoder architecture with skip-
connections for two-hand segmentation in third-
person viewpoint. Recently, [25] extended the
segmentation task to 8 classes to include arms
and objects and trained a FCN on synthetic data
with certain level of generalization on real depth
data. Following [5], [6] used a Correspondence
Regression Network to estimate two-hand seg-
mentation prior to hand pose estimation, which
shows the significance of separate segmentation
of the two hands for pose estimation as it provides
information on how interacting hands occlude
each other. Note that for depth-based approaches,
segmentation ground truth is obtained by color
thresholding, requiring subjects to wear thin col-
ored gloves. Therefore, datasets for depth-based

hand segmentation are not suitable for training
RGB-based approaches.

Color-based methods Depth cameras have ad-
ditional setup overhead and indoor requirement
with higher power consumption and cost, making
its applicable applications much more limited
comparing to the ubiquitous RGB cameras. Be-
fore the revolution of deep convolutional net-
works in the field of computer vision, [26], [27],
[28] proposed motion-based approaches for bi-
nary foreground segmentation with the assump-
tion that the motion pattern is different for the
foreground and background. Some methods [29],
[30], [31] rely on consistent skin color for hand
segmentation. Being aware of the possible illu-
mination difference in scenes, [11], [32] trained
multiple hand detectors on a mixture of local and
global appearance features from various scenes
and adaptively selected detectors based on the
test images. To address two-hand segmentation
with possible slight inter-hand occlusion, [33]
performed binary hand segmentation and left-
right hand split based on the distribution of an-
gle/position of hands as well as temporal super-
pixels.

Recent approaches utilize convolutional deep
networks as stronger appearance models. [8] used
a CNN to classify proposed bounding boxes and
performed hand segmentation using Grabcut in-
side the bounding boxes. They also demonstrated
simple static gesture recognition using the ob-
tained segmentation masks. Although the CNN
is designed to classify detected hands as one
of four interacting hands, the window proposal
and classification algorithm do not address the
issue of similar-object occlusion between hands.
[9] later proposed to segment the hands directly
using RefineNet [34] and performed extensive
evaluation on multiple datasets for binary hand
segmentation in less constrained environments. In
order to better generalize the models to unseen
scenes without requiring annotated data for train-
ing in the new domain, [13] proposed a Bayesian
CNN-based approach to estimate pseudo-labels in
the target domain with a hand shape discrimina-
tor for unsupervised domain adaptation. Despite
achieving promising cross-dataset accuracy, their
domain adaptation technique is valid for binary-
label segmentation only. [7] introduced the first
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color-based two-hand segmentation method ro-
bust for complex interactions using an encoder-
decoder residual network that also estimates the
hand heatmap energy for detection. However,
their model was only able to train on synthetic
data and cannot be applied to images in the real-
world domain. [35] trained a UNet [36] on a
mixture of synthetic and noisy real-world data
for two-hand segmentation in a laboratory envi-
ronment from third-person viewpoint. To perform
both hand segmentation and detection, we adopt
the method of [7] that adds the hand heatmap
energy channels to the segmentation output chan-
nels for the segmentation models in our studies.
Our experiments show that the addition of hand
heatmap energy output channel complements the
segmentation task and does not negatively impact
segmentation accuracy.

Hand Segmentation Datasets

Existing Datasets

Pioneering work [11] contributed three ego-
centric videos (EDSH1, EDSH2 and EDSH-
kitchen) with varying illumination for training
and evaluation of binary hand segmentation. For
activity recognition, [10] proposed Georgia Tech
Egocentric Activity Dataset (GTEA) with 663
annotated frames consisting of two-hand labels
(no inter-hand occlusion). [12] later published an
extended version EGTEA with 13,847 binary-
label annotated frames. To enable hand segmen-
tation in more unconstrained settings, [8] intro-
duced EgoHands as the first large-scale hand
segmentation dataset with 4,800 annotated frames
consisting of a maximum of 4 interacting hands.
For the same purpose, [9] additionally introduced
EgoYouTubeHands (EYTH) with ∼1290 anno-
tated frames from three Youtube videos and Han-
dOverFace (HoF) with 300 annotated frames from
third-person Web images. To demonstrate cross-
dataset adaptation performance, [13] annotated
855 and 488 frames for human grasping datasets
UTG [37] and YHG [38] respectively. To address
the issue of data scarcity, [7] introduced two
large-scale synthetic dataset (Ego3DHands) with
a total of over 100,000 annotated frames on two
hands.

Figure 2: Hand images (grayscale) with different
visual shadow features from different lighting
directions.

Ego2Hands

As existing datasets with real-world data re-
quire manual annotation, they severely lack the
quantity and variety needed for learning-based
hand segmentation on images in the wild for real-
world applications. On the other hand, synthetic
dataset consists of data in a different statistical
distribution from the real-world data and therefore
can only be used for theoretical research analysis
or mixed training with real-world data for limited
knowledge transferral.

To solve the problem of data scarcity, we
introduce a large-scale dataset Ego2Hands that
consists of 188,362 annotated frames for only
the right hand. Segmentation masks are obtained
by automatically removing the background in
green screen setting. 22 participants with di-
verse skin colors and hand features are selected
and instructed to perform free one-hand motion
while recording using a head-mount webcam
(Logitech C922) at 30 fps. This process allows
simple and fast data collection for segmenta-
tion data. During training, we composite images
online by randomly selecting two right hand
images, flipping one horizontally to create the
left hand, and inserting a random background
image. For background images, we use the 19,216
images provided by [7] with the additional 14,997
high-quality images in the DAVIS datasets[39],
[40], which results in approximately 1.21× 1015

unique hand-scene combinations prior to data
augmentation.

Despite the massive quantity in training
instances, it is still unrealistic for deep net-
works to learn the complete RGB space. For in-
stance, for hands under a particular colored light-
ing, learning-based models would need sufficient
training data with hands in that specific color.
This is an important issue rarely addressed by
previous works as their proposed datasets do not
even contain diversity in skin color under normal
lighting. Consequently, we explore the grayscale
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image space coupled with image edge maps as
inputs for a truly color-invariant approach. In
the grayscale domain, we find two major fac-
tors crucial for generalization in the real-world
domain: brightness and shadow features. For di-
versity in brightness, we scale the pixel values
of both hands to shift the means to a randomly
selected value β ∈ [15, 240] while keeping the
image values always clipped within [0, 255].
Evidently, variation in the brightness of the hands
also contributes significantly to diversity in skin
colors. For different shadow features, we include
light sources from various directions during data
collection (Fig. 2 shows the visual difference in
shadow features due to the direction of the light
source).

To obtain the hand energy for detection, we
follow [7] by generating an internal synthetic
dataset (Ego3DHandsR) with only the right hand,
and jointly train their proposed HandSegNet on
Ego3DHandsR and Ego2Hands using the follow-
ing loss,

Lcombined = Lsynth
seg + Lreal

seg + Lsynth
energy (1)

where Lsynth
seg and Lreal

seg are the Cross Entropy
Loss for the segmentation of the synthetic and
real right hands, and Lsynth

energy is the Mean Squared
Error loss for the heatmap energy of the synthetic
right hands obtained using the ground truth 2D
joint locations. We exploit the feature that both
domains contain right hands with no background
noise. In doing so, we successfully transfer the
knowledge of the hand energy from synthetic
data to real-world data and generate the hand
energy for all training instances in Ego2Hands.
This novel knowledge transferral method that
automatically generates the heatmap energy data
in the target domain is very efficient as ground
truth data for object detection commonly requires
extensive manual annotation [20], [41].

Some datasets [8], [9] contain annotated hand
segmentation that excludes the arm, therefore
combining the task of segmentation and detection
into one, which is valid in absence of occlusion.
Others [10], [11], [12], [13] include the arm
in segmentation and neglect the task of hand
detection. We argue that it is more natural to
keep the two tasks separate by including the

arm for segmentation because the boundary line
is ambiguous. In addition, we can address hand
detection in form of heatmap energy. Note that
removing the arm in hand segmentation also
requires manual annotation infeasible for large-
scale data generation. We show in later section
that our training data enables models to achieve
high accuracy in both tasks simultaneously.

With the obtained hand energy, we are
able to composite more realistic training images
by selecting proper overlaying order. After ran-
dom selection of the left and right hand from
Ego2Hands, the hand with the larger energy sum
is selected to be overlaid on top of the other
hand. We discover that naive overlaying creates
the unrealistic feature of green color bleeding at
the hand boundaries, which leads to noticeable
decline in the model’s ability to generalize to real-
world data in our experiments. Accordingly, we
apply dilation and gaussian blur on the original
alpha-channel to create smoother hand boundaries
for overlay. The green color bleeding also be-
comes unrecognizable with smooth-edged over-
laying in the grayscale domain.

For each composited image, we further data
augment by applying 1) random horizontal and
downward vertical translation within reasonable
ranges on each hand, 2) random smoothing with
various kernel sizes to simulate blur from motion
or auto-focus 3) random brightness on the hands
and background images, 4) Random horizontal
flips and cropping on background images and 5)
10% drop rate for a each hand (mutually exclu-
sive). Thus our compositing-based approach can
generate unlimited training images with variety.
For domain adaptation on specific environments,
we simply use the background images collected
from that scene for compositing training images.
See Fig. 3 for generated sample images for train-
ing.

To support quantitative evaluation, we intro-
duce an evaluation set that includes 8 videos
each with 250 annotated frames. We select 4
additional participants with diverse skin tones
to perform free two-hand motion in 8 different
scenes with various lighting conditions. Inspired
by video object segmentation method [42], we
exploit the temporal consistency in video se-
quences by obtaining manual annotation with the
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Figure 3: Top row shows the original composited images using the training set of Ego2Hands and the
avaialble background images. Bottom row shows the data augmented version in grayscale for training.

Datasets Type #Annotated
Frames

#Hand
Instances

#Subjects #Scenes Objects #Classes Resolution

GTEA [10] Real 663 1231 4 1 3 3 720× 405
EDSH [11] Real 743 - 1 3 3 2 1280× 720

EgoHands [8] Real 4800 15053 4 3 3 5 1280× 720
EYTH [9] Real 1290 2600 - - 3 2 384× 216
HoF [9] Real 300 507 - - 7 3 384× 216

EGTEA [12] Real 13847 - 32 1 3 2 960× 720
UTG [13] Real 855 - 5 2 3 2 480× 360
YHG [13] Real 488 - 4 - 3 2 480× 360

Ego3DHands
[7] Synth 110,000 ∼214,500 1 - 7 3 960× 540

Ego2Hands
(Ours) Real 188,362 (train)

2,000 (test)
∞ (train)

4,000 (test)
22 (train)
4 (test)

- (train)
8 (test)

7 3 800× 448

Table 1: Statistics of available hand segmentation datasets.

Figure 4: Illustration of the difference in annota-
tion accuracy between datasets. Existing datasets
contain false positive labeling for gaps and
holes and potentially inaccurate boundaries (Best
viewed in magnification. Annotated masks are
overlaid in colors.)

help of HandSegNet[7] pretrained on Ego2Hands
to minimize annotation time. For frame Fi, our
pretrained model produces a semi-accurate seg-
mentation, which we manually refine with the
support of Grabcut to create the ground truth Si.
The model is then finetuned on Si for a more
accurate prediction on Fi+1. We also annotate the
hand energy Ei for approximate location of both
hands. Fig. 4 shows a comparison of annotation
accuracy between Ego2Hands and other datasets.
Due to the gap between the gesture space of
Ego3DHandsR and Ego2Hands, some of the gen-
erated energy data also needs refinement. We
use a similar tool to refine the generated energy
for the entire training set of Ego2Hands semi-
automatically with human supervision.

We show in Table. 1 a detailed compari-
son between Ego2Hands and existing benchmark
datasets. Ego2Hands consists of order of mag-
nitudes more annotated hand frames capable of
generating unlimited training data with pixel-
accurate segmentation annotation on both hands
using our compositing-based approach. We also
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provide the largest and most diverse evaluation
set necessary for comprehensive evaluation in
various real-world practical settings. In summary,
Ego2hands is superior in annotation quality, quan-
tity and data diversity.

Convolutional Segmentation Machine
Inspired by the Convolutional Pose Machine

[43] that sequentially improves the heatmap es-
timation for 2D keypoints in six stages, we in-
troduce the Convolutional Segmentation Machine
(CSM) that outputs segmentation prediction in
two stages. The task of 2D keypoint estimation
is fundamentally different from semantic seg-
mentation as the former estimates the approx-
imate location of the target keypoints in form
of heatmap energy and does not require high-
resolution output. On the other hand, semantic
segmentation requires higher precision and reso-
lution for classification of each pixel in the image.

Accordingly, we propose an encoder-decoder
architecture for the task of hand segmentation as
shown in Fig. 5. We couple the grayscale image
and the edge map obtained from the original RGB
image for a 2-channel input image and resize the
image size to 288×512. Each downsampling and
upsampling residual layer consists of 3 bottleneck
and 3 deconvolutional bottleneck blocks respec-
tively. For stage 1, the network output has 1/4
of the original resolution and is concatenated to
the intermediate network feature. Stage 2 refines
the results from stage 1 with increasing resolution
that is half of the original resolution. Empirically
we find that an additional stage 3 that returns the
output to the original resolution does not produce
higher segmentation accuracy. At test time, our 2-
stage design gives users the flexibility of choosing
between speed and accuracy, which is a valuable
feature in real-world applications. A later section
shows that both stages are capable of producing
competitive results.

The segmentation output is trained on the 3
classes (Left hand, right hand and background)
with cross-entropy loss. To perform hand detec-
tion as well as segmentation, we add 3 additional
output channels with sigmoid activation trained
using mean squared error loss for the energy re-
gression of the 3 classes. We show in quantitative
analysis that segmentation models can perform
both tasks well without compromising accuracy.

Experiments
We evaluate existing state-of-the-art methods

on the proposed evaluation set of Ego2Hands (8
sequences each with 250 annotated frames) and
compare the two-hand segmentation and detection
accuracy as well as the corresponding model
sizes and inference speed. We use the mean
Intersection over Union (mIoU) as the metric for
segmentation task. For hand detection, we use
the conventional metric of Average Precision that
classifies a detection bounding box as correct if its
overlap between the ground truth bounding box
exceeds 50% (AP0.5). The ground truth bounding
boxes are obtained using the annotated hand
energy heatmaps.

We compare the models’ performance with
and without the input edge map and the addi-
tional output energy channel to justify our design
choices. As it is impossible for static pretrained
models to produce highly accurate results in all
possible scenes, we also perform experiments to
study the impact of domain adaptation. To sup-
port scene-specific adaptation, we include in the
evaluation set a collected background sequence
(∼30 seconds) for each evaluation sequence. The
background collection process simulates a en-
vironment scanning procedure using prospective
egocentric color-based hand tracking devices.

The following architectures are selected for
evaluation:

• UNet and UNet1/4 [36]. We evaluate using
the standard UNet and a version with 1/4 of
the original network width. Previous work [44]
has shown that reducing the number of feature
channels results in much more compact model
while preserving its ability for binary-label
hand segmentation.

• RecUnet and DRU-Resnet50 [44]. It is pro-
posed that integrating recursions on the inter-
nal stages of the network can produce higher
segmentation accuracy. We select RecUNet-
DRU(4) and DRU-Resnet50 with Dual-gated
Recurrent Unit (DRU) for evaluation as these
two models achieved state-of-the-art results on
multiple datasets for binary-label hand seg-
mentation.

• SegNet [45]. Primarily motivated by scene
understanding applications, SegNet is a pop-
ular semantic segmentation architecture with
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Figure 5: Architecture of Convolutional Segmentation Machine. The number of channels is denoted
at the top of the boxes.

Model #Params Inference
time (ms)

Pretrained
edge 7

energy 7
edge 3

energy 7
w/ edge & energy
IoU AP0.5

Adapted
w/ edge & energy

IoU AP0.5

UNet1/4 [36] 0.8M 10.2 0.725 0.730 0.728 0.721 0.843 0.809
UNet [36] 13.4M 9.9 0.652 0.630 0.651 0.650 0.779 0.755

RecUNet [44] 1.1M 78.1 0.812 0.834 0.844 0.809 0.874 0.848
CSM-stage1 (Ours) 9.7M 25.4 0.721 0.802 0.792 0.827 0.878 0.910
CSM-stage2 (Ours) 10.0M 35.9 0.728 0.811 0.803 0.826 0.889 0.913

SegNet [45] 29.4M 11.9 0.687 0.667 0.644 0.637 0.788 0.776
ICNet [46] 28.3M 42.6 0.828 0.824 0.823 0.874 0.885 0.943

DeepLabV3+* [47] 59.3M 44.2 0.741 0.776 0.765 0.794 0.863 0.892
RefineNet* [34] 113.9M 49.1 0.824 0.847 0.836 0.873 0.884 0.901

DRU-Resnet* [44] 145.5M 85.9 0.001 0.275 0.306 0.311 0.550 0.507

Table 2: Evaluation of state-of-the-art models on Ego2Hands. Only IoU is reported for experiments
without the energy output channel. Models with * are trained using pretrained Resnet encoder.

balance in model size and accuracy that fits
well with the task of two-hand segmentation
on images in the wild.

• ICNet [46]. Proposed for real-time semantic
segmentation, ICNet with multi-resolution im-
age cascade achieves high accuracy and im-
pressive generalization with 1/4 of the output
resolution. It is apparent that smaller output
resolution can avoid unnecessary deconvolu-
tion layers and result in faster inference speed.

• DeepLab V3+ [47]. Targeting high-quality se-
mantic segmentation, DeepLab v3+ improves
its predecessor by adding a decoder module
to further refine segmentation results. We use
Resnet-101 as the encoder for this model in
our experiments.

• RefineNet [34]. Using Resnet-101 as encoder,
RefineNet uses multi-path refinement to ex-

ploit features available in the down-sampling
process for high-quality segmentation. [9]
adopted it for the task of binary-label hand
segmentation.

Training Details.
We divide the training process into the pre-

training and the adaptation phase. In pretraining
phase, all models are trained for 100k iterations
with an initial learning rate of 1.0× 10−4 de-
creased with a ratio of 0.5 every 20k iterations.
In adaptation phase, we train the pretrained (w/
input edge map & output energy channel) models
for 10k iterations using an initial learning rate of
1.0× 10−5 decaying with the same ratio every
5k iterations. We use Adam optimizer and find
general convergence from all models using this
training setup. To ensure accurate estimation,
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averaged results from 3 trained model instances
are reported for every architecture.

As illumination (not skin tone) is the dom-
inant factor for the brightness of the hands in
input images and is known for specific envi-
ronments, we perform brightness augmentation
within ranges specific to the scenes in the adap-
tation phase. The mean brightness value β of
the composited hands is scaled to be in range
of [0, 55], [55,200], [55, 255] for scenes with
dark (seq5), normal (seq1, 3, 4, 6, 7) and bright
(seq2, 8) illumination respectively. Bright scenes
has wider brightness range due to the possibility
of shadow. β for background images is jittered
by ±50.

Quantitative Analysis

Table. 2 provides detailed quantitative results
for the selected models on various settings. We
want to point out that a comprehensive compari-
son involves various factors including model size,
inference speed, segmentation/detection accuracy,
and the ability to generalize and adapt.

Firstly, we want to justify our design choice
of the additional input edge map and energy
output. Models with input edge maps show over-
all improvement with the exceptions of UNet,
SegNet and ICNet. UNet and SegNet underper-
form in general on the target dataset with lower
generalization and adaptation accuracy. On the
other hand, ICNet can achieve high segmentation
accuracy without the image edge map. The addi-
tion of energy output shows minimum impact on
the segmentation accuracy while providing hand
detection output information essential for many
applications.

With small amount of parameters, UNet1/4
and RecUNet achieve high pretrained accuracy.
However, they have worse adaptation accuracy
and detection accuracy. Additionally, the recur-
sion on internal network states notably increases
the inference time, making RecUnet and DRU-
Resnet the slowest models in our analysis. It
is worth mentioning that inference speed for
segmentation and detection is crucial in real-
world applications as there are oftentimes subse-
quent pose estimation/gesture recognition mod-
ules. Heavy models (DeepLabV3+, RefineNet)
generally achieve high pretrained accuracy as

well as adapted accuracy in both segmentation
and detection. We find that heavy models are
dependent on pretrained encoders for optimal
performance. Interestingly, DRU-Resnet with the
largest model size has the lowest test accuracy
despite high traiing accuracy.

We argue that it is necessary for an archi-
tecture to be well-balanced with high general-
ization/adaptation accuracy, compact model size
and fast inference speed for practical applica-
tions. Existing models struggle to satisfy all
the aforementioned qualities. To fill in the gap,
CSM achieves high adaptation accuracy of IoU
= 0.889 in segmentation and AP0.5 = 0.913 in
detection with only 10.0M parameters. At the
same time, CSM-stage1 achieves an inference
time of 0.0254s with slightly lower accuracy
comparing to CSM-stage2 results. This indicates
that CSM outperforms state-of-the-art models in
applications with confined environments natural
for scene-specific domain adaptation (VR/AR,
gesture control systems, etc.)

It is important to recognize the trade-off be-
tween architectures from our experiments. For in-
stance, in applications where scene-specific adap-
tation is unrealistic and generalization accuracy
is required (such as egocentric sign language
recognition in unconfined environments), ICNet
produces promising pretrained accuracy with rel-
atively compact model size and fast inference
speed. ICNet can also be favored in applications
that focus more on hand detection. In cases
where the model size is not the limiting factor,
RefineNet achieves very high pretrained accu-
racy. On the other hand, RecUnet is clearly the
best model in memory-constrained settings. For
applications that desire faster inference speed,
shallow models such as UNet become more ideal.
We claim that CSM is the most well-balanced
architecture and provide insights valuable for a
more thorough understanding.

We want to reemphasize that the evaluation
sequences cover various range of illumination and
include hands (various skin tones) and scenes
not present in the training set of Ego2Hands.
Our quantitative results show that the proposed
dataset and compositing-based training method
enables models to generalize to the real-world im-
age domain. To provide a proper perspective for
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Figure 6: Qualitative results obtained using scene-adapted CSM-stage2. Odd rows show sample
images in evaluation sequences with various skin tones and illumination. Even rows show the output
visualization. Best viewed in magnification.

our revolutionary level of generalization, as [13]
very recently tried to address the problem of do-
main adaptation in a specific unseen environment
for binary-label hand segmentation, we enable
models to achieve high accuracy on two-hand
segmentation and detection in domain-invariant
setting with the option to further improve using
scene-specific adaptation. Qualitative results are
provided in Fig. 6.

Conclusion

In this work, we introduce a color-based hand
dataset and the corresponding training technique
that helps deep convolutional networks to achieve
domain generalization on the task of two-hand
segmentation/detection. We propose a novel ar-
chitecture CSM capable of producing high ac-
curacy with compact model size and fast infer-
ence speed practical for real-world applications.
Thorough evaluation and analysis for state-of-the-
art models are reported on our new benchmark
dataset. We hope our work can open up more

directions for color-based hand tracking systems
in the research community and industry.
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Game Theory: An Examination
of Cooperation and Coalitions
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Abstract—Game theory has been an influential topic throughout history. In every stage of
humanity, decisions rely upon decisions made by others. As civilization has grown to what we
now know, game theory has evolved as well. It has taken a formal mathematical formulation. It
has received generalized solutions to some of it’s most important constructs of games. it has
also developed a notion of coalitions and how they can cooperate to improve outcomes over
what an individual can get alone. This concept of cooperative game theory and coalitions was
birthed during the peak of game theory. That is, during the breakthrough’s of game theory’s
founding fathers: John Von Neumann, John Nash, and many others.

TO UNDERSTAND cooperative and coalitional
game theory, we must first understand the foun-
dations of where game theory arose. Game theory
is an extensively studied area in many fields such
as economics, biology, and politics. Game theory
has been widely studied and its mathematical
foundations and formulations are rather new, dat-
ing less than one hundred years ago.

Game theory’s first general formulation was
by John Von Neumann and Oskar Morgenstern in
1944, however the concept of game theory came
long before Neumann and Morgenstern defined it.
Throughout history, decisions made are directly
influenced by thinking about the potential deci-
sions of others. This concept is common through-
out human history, where individuals were pas-
sively applying all of the concepts of game theory.
Historically popular names such as the Span-
ish conqueror Cortez, William Shakespeare, and
Thomas Hobbes are among a few to display game
theory before its formal introduction to science.

When the Spanish conqueror Cortez first
landed in Mexico, he was met by the indigenous
Aztecs. The Aztecs were far more numerous
than Cortez’ men, and thus Cortez’ men were
outmatched. In order to keep his troops from

making the rational decision of retreating, Cortez
burned all of his ships, thus changing the rational
decision of his troops to fight for their lives.
Additionally, this had an intimidating effect on
the Aztecs, as their rational thinking led them to
believe that anyone who would burn their own
ships must be so sure of victory that it would
be unwise to fight them. This caused the Aztecs
to retreat into the hills, giving Cortez the best
possible outcome. [1]

In William Shakespeare’s Henry V, Henry
decides to kill his French prisoners, in full vision
of the enemy and Henry’s men. This action for
Henry’s own men is a metaphorical ship burning,
signifying that death awaits them if they do not
prevail against the enemy. For the Enemy this
affects their view of the potential payoffs, making
the payoff for losing much worse than what they
may have thought prior. This action changed the
incentives for both sides in a way that benefited
Henry and the English’s prospects of victory.[1]

Philosopher and author of The Leviathan,
Hobbes, thought that the ideal situation is for
all to be able to act freely. Cooperation is an
obvious choice for some, as they can achieve
more together than without one another, but
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Figure 1. William Shakespeare’s Henry V is one of
the first examples of game theory in literature.

problems arise. This exists with immoral and
amoral agents. Rational thinkers will question if
the other party is going to return the promises
of the relationship. This will lead to preemptive
thinking, hurting the other before they themselves
could be harmed. Eventually this cycle will lead
to what Hobbes called a “war of all against
all”. The only way to combat this is to lead the
people under a tyranny or anarchy. These political
outcomes offer punishments for not keeping these
cooperative promises, and create social dilemmas
for participants. Thus we see how cooperation
can be enforced by what we will call “contracts”.
This example from the Leviathan shows us how
cooperative game theory can differ from non-
cooperative game theory. Before exploring the
roots of specifically cooperative game theory and
coalitional game theory, we need to understand
the foundations of game theory in general. [1]

ROOTS OF GAME THEORY

Waldegrave’s Problem

The formal formulation of game theory began
prior to Neumann and Morgenstern’s seminal
paper. Pierre Rédmond de Montmort was the
author of the famous Waldegrave problem. The
problem was established first on record in April
1711, from Montmort to Nicholas Bernoulli. The
Waldegrave problem is the first appearance of a
mixed strategy solution in game theory.[2]

The description of the game is as follows:
Suppose there are n+1 players with each putting

wrapfig

Figure 2. Pierre Rédmond de Montmort’s book in
which the waldegrave problem is published

one unit into the pot. The first two players play
each other and the winner plays the third player.
The loser of each game puts one unit into the pot.
Play continues until one player has beaten all of
the others in succession. The problem according
to Montmort, is to find the expectation of each
player and the probability that the pot will be won
within a specified number of games. Montmort’s
Waldegrave problem represents the first formal
thinking on the concept of game theory while
associated with one of the pillars of statistics,
Nicholas Bernoulli. Montmort also published this
problem in his famous book of probability and
games of chance, titled, Essay d’analyse sur les
jeux de hazard.[2]

Edgeworth
Francis Ysidro Edgeworth published an 1881

paper titled, Mathematical Physics: An Essay on
the Application of Mathematics to the Moral
Sciences. In this publication Edgeworth consid-
ered the problem of determining the outcome of
trading between individuals. In solution to this
problem Edgeworth discovered what he coins
the contract curve. In a game containing two
commodities and two types of consumers, he
demonstrates how his contract curve shrinks to
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the set. Edgeworth’s contract curve developed
into the idea of the core. The core can be defined
as a set of payoff allocations x ∈ RN satisfying

1) Efficiency:
∑

i∈N xi = v(N)
2) Coalitional rationality:

∑
i∈C yi ≥ v(C)

for all coalitions C ⊆ N

The core can be simply defined to be the set
of imputations that are not dominated, or the set
of allocations that cannot be improved upon by
changing coalitions. This turns out to be one of
a few famous solutions to a cooperative game.
The core is among the first formulated mathe-
matical structures for cooperative game theory
before its formal introduction by Neumann and
Morgenstern.

Émile Borel

In 1938, Émile Borel published a book titled,
Applications aux Jeux de Hasard . In this book
Borel proves a minimax theorem for two-person
zero-sum matrix games when the payoff matrix
is symmetric and also to a specific game called
Blotto. Although this was a great accomplishment
it still lacked the general ability to be applied to
other problems. [3]

John Von Neumann

John Von Neumann is most known for his and
Morgenstern’s 1944 ”Theory of Game and Eco-
nomic Behavior”, however, his inclusion in game
theory began much earlier. In 1928, Neumann
proved the minimax theorem which states that
every two-person, zero-sum game with finitely
many strategies for each player is determined. [4]

The foundations of Montmort lead to the
seminal paper by John Von Neumann and Oskar
Morgenstern. In their 1944 paper titled, ”The-
ory of Game and Economic Behavior”, non-
cooperative game theory and cooperative game
theory receive formal definitions. Neumann and
Morgenstern define several important areas of
cooperative game theory.

Figure 3. Jon Von Neumann details the first mathe-
matical formulation of game theory [4]

Utility

An important area of game theory is utility.
Neumann and Morgenstern define utility as ”the
fundamental concept of individual preferences” (
p.15). In 1938 Paul Samuelson created a mathe-
matical foundation for defining a utility function
and in 1944 Neumann and Morgenstern provide
an axiomatic theory of utility using Bernoulli’s
old theory of utility as an independent discipline.
Neumann and Morgenstern’s axioms are as fol-
lows:

Neumann and Morgenstern define a lottery
L as probabilities that mutually exclusive events
will happen, all probabilities summing to 1.

1) Axiom 1 (completeness)
For lotteries L,M exactly one of the
following holds:
L < M,M < L, or L ∼M

2) Axiom 2 (transitivity)
If L < M and M < N , then L < N

3) Axiom 3 (continuity)
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If L ≤ M ≤ N , then there exists a
probability P ∈ [0, 1]such that
pL+ (1− p)N ∼M

4) Axiom 4 (independence)
For any N and p ∈ (0, 1], L ≤ M iff
pL+ (1− p)N ≤pM + (1− p)N

Neumann and Morgenstern propose that any
set L that satisfies these axioms is a utility func-
tion. One might then ask, what happens if coali-
tions can split the payoffs however they desire?
This would then open the door for bargaining to
be in a group as it could be better than the Nash
Equilibrium, or the stable state of no cooperation.
In order to allow this kind of bargaining and
cooperation, we must have transferable utility. [4]

Transferable Utility

In 1991, Roger B Myerson stated that trans-
ferable utility is the idea that given a coalition
C, the payoffs are given by coalition rather than
individual, where it is then the responsibility of
the coalition to disburse the payoff to the indi-
viduals. Such transfers are possible if the players
have a common currency that is valued equally
by all. Transferable utility is an assumption of
cooperative game theory as it allows for there
to be negotiation and coalition forming based
on how the payoff will be split after the whole
coalitions payoff (which is larger than each player
would have had individually) is received. With
the idea of transferable utility in mind, we can
now explore how a bargaining game was created
through this concept. [3]

Bargaining

Bargaining is an idea first seen in the semi-
nal work Neumann and Morgenstern. Here they
proposed that in a two-person game, the two
players could be allowed to communicate and
negotiate. This takes the turn towards cooperative
game theory, however bargaining games are only
cooperative to the extent that the agreements
are able to be enforced. A bargaining game is
set up to be a noncooperative game where two
players negotiate on the division of a surplus
known as the alternating offers bargaining game.
Players take turns being the proposer of the game.
Division of surplus in unique subgame perfect

Figure 4. John Nash Jr. developed a solution to
the bargaining problem, leading to cooperative game
theory. [5]

equilibrium depends upon how strongly players
prefer current over future payoffs. As players
become perfectly patient in this game, the equilib-
rium converges to the Nash bargaining solution.
This two-person bargaining game consists of a
feasibility set F , a closed subset of R2 which
is assumed to be a convex set of agreements. F
is assumed convex because for any two feasible
outcomes a convex combination, or weighted
average of them is also feasible. A two-person
bargaining game also consists of a disagreement
point d = (d1, d2), where d1 and d2 are the
payoffs to player 1 and player 2 respectively. This
is the payoff that each player is guaranteed if no
agreement can be made. There are some different
solutions that have been proposed to bargaining
problems, among which, the most well known is
the Nash bargaining solution. [3]

Nash Bargaining Solution

In 1950, John Nash proposed an axiomatical
solution to the bargaining problem in his work
titled, The Bargaining Problem. In classical Nash
style, this work is only 8 pages long yet provides
a compelling solution to the bargaining problem
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[5]. Nash states that Neumann and Morgenstern
proposed a theory that n-person games include
a special case, the two-person bargaining prob-
lem. However as Nash states, “the theory there
developed makes no attempt to find a value for
a given n-person game, that is, to determine
what it is worth to each player to have the
opportunity to engage in the game ... It is our
viewpoint that these n-person games should have
values” [5]. Nash saw that, although Neumann
and Morgenstern covered a large portion of game
theory, there was a need for a solution to this
two-person bargaining problem. Before we get
to Nash’s axioms for the bargaining solution,
Nash proposed that we will only be able to
provide a utility function for our two players if
the following criteria hold:

1) An individual offered two possible antici-
pations can decide which is preferable or
that they are equally desirable.

2) The ordering thus produced is transitivee;
if A is better than B and B is better than
C then A is better than C.

3) Any probability combination of equally de-
sirable states is just as desirable as either.

4) If A, B, and C are as in assumption (2),
then there is a probability combination of A
and C which is just as desirable as C. This
amounts to an assumption of continuity.

5) . If 0 ≤ p ≤ 1 and A and B are
equally desirable, then pA + (1 − p)C
and pB + (1 − p)C are equally desirable.
Also, if A and B are equally desirable, A
may be substituted for B in any desirability
ordering relationship satisfied by B.

Now that Nash has defined the fundamentals
of what assumptions must be met in order to
have utility functions for the players of the game,
he proposes that a solution should satisfy the
following axioms:

1) Invariant to equivalent utility representa-
tions (affine transformations).

2) Pareto optimality.
3) Independence of irrelevant alternatives.
4) Symmetry.

And thus, Nash proved that the solutions
satisfying these axioms are the points (x, y) in

F which maximize:

(u(x)− u(d))(v(y)− v(d)) (1)

where u and v are the respective utility func-
tions of player 1 and player 2, and d is the
disagreement point. u(d) and v(d) are called the
status quo utilities, or the utilities given if one
player decides not to bargain. The product of the
two excess utilities is called the Nash product.
It is intuitive to see that the Nash bargaining
solution gives each player their status quo as well
as a share of the payoff that comes from co-
operation. However this is still a noncooperative
game, which leads us to another key aspect of
cooperative game theory, that is coalitions. [5]

Coalitions

In our Nash bargaining solution above, one
can see the principals of cooperation building
in game theory. However the game still consists
of two players pitted against each other. What
happens when the number of players start to
increase in a game that rewards cooperation?
There are games out there that, either naturally
or artificially, incentivize the forming of groups
among players. These groups take on a formal
name of coalitions. [3]

SEPARATION FROM
NON-COOPERATIVE GAME THEORY

The difference between non-cooperative game
theory and cooperative game theory can get very
unclear at times, when in non-cooperative game
theory there can be bargaining which is a form
of cooperation. So where exactly is the line?
In his book Game Theory: Analysis of Conflict,
Roger B. Myerson says, “The key assumption
that distinguishes cooperative game theory from
noncooperative game theory is this assumption
that players can negotiate effectively.” [3] (p.419-
p.420) In a cooperative game, competition among
coalitions is incentivized by the existence of ex-
ternal enforcement, or contract law. In noncooper-
ative games there are either no alliances allowed
or they are strictly self-enforcing (i.e. through
rational threats). This type of coalitional game is
not considered a cooperative game but as one can
easily see, it most certainly has characteristics of
a cooperative game. [3]
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Figure 5. Prisoners dilemma. Cooperate corre-
sponds to a participant choosing to talk. Defect cor-
responds to a participant choosing to remain silent.

Cooperative game theory makes some key
assumptions that define its nature. These assump-
tions are the following:

1) Players can negotiate effectively
2) Transferable utility

Cooperation in The Prisoners Dilemma

An illustration of why cooperation can lead
to better payoffs than Nash Equilibrium can be
shown easily in the prisoners dilemma (Figure
3). The prisoners dilemma says that two people
(players) are being held in separate rooms. Each
player has been given the following options:
Defect (tell the interrogator nothing) or Cooperate
(tell the interrogator what you know). The payoff
matrix in Figure 3 shows that our payoff relies
directly on what the other player chooses, how-
ever there is no way to talk to the other player to
come up with a solution. The Nash Equilibrium
of this problem is both player A and player B
choosing to choose cooperate which gets both
players three years of jail time. This is because
if either player were to switch their choice with
the other player staying the same, their payoff
would decrease. Therefore this is a stable, Nash
Equilibrium. However as you may have noticed,
what would happen if the two players could
communicate? They may come to the agreement
that if they both choose to defect then both of

them will only have to serve one year rather than
the alternative of three or five.[3]

This example shows how cooperating or bar-
gaining can lead to better payoffs for all players,
which leads us to the concept of cooperative
game theory. Cooperative game theory, rather
than having two players, has players who are al-
lowed or incentivized to create groups/coalitions.
Contracting as previously stated is key to the
differentiation of cooperative game theory from
noncooperative. Why the need for such contract-
ing at all? An experiment conducted by Reinhard
Selten can help us understand more deeply.[3]

Selten details his experiment in his 1986
manuscript, End Behavior in Sequences of Finite
Prisoner’s Dilemma Supergames. In this work,
Selten conducts a game where participants played
a repeated Prisoner’s Dilemma with real money.
Player’s did not know how many repetitions there
would be, but they knew it could not last longer
than a specified amount of time. The participants
were allowed to communicate which throughout
the majority of the game resulted in the players
acting as we decided would be optimal in the
previous paragraph, but without enforcement of
their agreement, as the clock got closer to the end
of the game players were incentivized to switch
to get a better payout while hurting the other
player. This shows how to informal “contract” of
negotiating to an optimal for both players may
only last until the rational threat of the other
player not trusting them or turning on them will
only last until that threat is no longer valid. In
our case the threat was no longer valid as the
experiment was coming to an end so the player
thought that it did not matter if the other player
trusts them anymore. And thus we see that there
is a good and valid place for cooperative games as
noncooperative games can have some undesirable
outcomes in certain situations.[3]

ORIGINS OF THE PILLARS OF
COOPERATIVE GAME THEORY

Neumann and Morgenstern propose a game
that introduces cooperative and coalitional game
theory. The game is as follows; There are three
players, where the set of strategy options for each
player i is

Ci = (x1, x2, x3) ∈ R3|x1 + x2 + x3 ≤ 300
(2)
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and xj ≥ 0

Thus each player can propose a payoff allocation
for the three players such that no player’s payoff
is negative and the sum of their payoff does not
exceed 300. Our utility function is

ui(c1, c2, c3) = xi (3)

if cj = ck = (x1, x2, x3) for some j 6= k

ui(c1, c2, c3) = 0 (4)

if c1 6= c2 6= c3 6= c1

Assuming that the players can negotiate
effectively, this simple game becomes quite
complicated. They propose that players 1 and
2 decide to negotiate to form a coalition and
split the profit 50/50. But then player 3 decides
that getting an unfair split is much better than
nothing, so they offer player 1 to split 60/40
thus providing incentive for player 1 to switch
to form a coalition with player 3. However this
cycle continues, and how does one come to a
solution? It never does, that is, without a change
in the game to restrict number of times one
can switch coalitions, a time limit, etc.. With a
restriction such as number of times a player can
switch coalitions, Neumann and Morgenstern
propose that the characteristic function has the
general form:

v(S) = minσN/S∈∆(CN/S)maxσS∈∆(CS)

∑
i∈S

ui(σs, σN/S) (5)

where N/S denotes the set of all players
in N who are not in the coalition S. We let
ui(σs, σN/S) signify player i’s expected payoff,
before transfers of money, when the correlated
strategies σS and sigmaN/S are independently
implemented. That is,

ui(σs, σN/S) =

∑
cs∈Cs

∑
cN/S∈CN/S

σS(cS)σN/S(cN/S)ui(cS, cN/S)

(6)
This asserts that v(S) is the maximum sum

of utility payoffs that members of coalition S can

Figure 6. In 1953, Lloyd Shapley formulates a way to
allocate payoffs for a coalition to its members based
on their contribution to the coalition. [6]

promise themselves. If this is satisfied, then we
say that v is the minimax representation.

Shapley Value

In cooperative game theory, where a game
involves coalitions of more than one player, there
are some basic parts. The first part is a utility
function for how much payoff a player can re-
ceive on their own as well as utility for each
coalition. Once a player knows how much each
coalition will make as a whole they can make
a decision of what coalitions to form. However
there may be something more important to con-
sider when choosing which coalitions to form,
that being the individual payoff after splitting
within the coalition. One would expect individual
payoff to directly correlate to the individuals
contribution to the coalition, but how does one
accomplish this allocation of payoffs? One pos-
sible answer to this question is offered by Lloyd
Shapley in 1951. Shapley’s suggestion holds for
the following definition of a coalitional game.
There is a set N of n players and a function v that
maps subsets of players to the reals: v : 2N → R
with v(∅) = 0 where ∅ denotes the empty set
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and v is a characteristic function. v(S) is called
the worth of the coalition S defined as the total
payoff received by the coalition. According to the
Shapley value, the amount given to player i is:

ϕi(v) =
∑

S⊆N−i

|S|!(n− |S| − 1)!

n!

∗(v(S ∪ i)− v(S))
(7)

where n is the total number of players and the
and the sum extends over all subsets S of N not
containing player i. In his book, Roger Myerson
describes the interpretation of the Shapley value
as follows. “Suppose that we plan to assemble
the grand coalition in a room, but the door to the
room is only large enough for one player to enter
at a time, so the players randomly line up in a
queue at the door. There are |N |! different ways
that the players might be ordered in this queue.
For any set S that does not contain player i, there
are |S|!(|N | − |S| − 1)! different ways to order
the players so that S is the set of players who
are ahead of player i in the queue. Thus, if the
various orderings are equally likely,

|S|!(|N | − |S| − 1)!/|N |! (8)

is the probability that, when player i enters the
room, he will find the coalition S there ahead
of him. If i finds S ahead of him when he
enters, then his marginal contribution to the worth
of the coalition in the room when he enters is
v(S ∪ i) − v(S). Thus, under this story of
randomly ordered entry, the Shapley value of
any player is his expected marginal contribution
when he enters.”. In a 1974 book by Shapley and
Robert Aumann, they extend the Shapley value
with respect to infinite games as well. [6]

CONCLUSION
Cooperative game theory was created during a

time with many brilliant minds working together
to figure out how to mathematically formulate

cooperation and its benefits. The birth of game
theory and cooperative game theory happened
concurrently, thus the distinction of when coop-
erative game theory was created can be grey.
Cooperative game theory truly is the result of
cooperation among brilliant mathematicians and
economists.
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Abstract—Strategic planning plays a vital role in our everyday life. We use it to determine the
best time to wake up, which tasks to prioritize today, what to eat, and many other daily decisions.
In a more explicit way, strategy defines human interactions in many varieties of games. Game
theory is the mathematical foundation for why we make the choices we do. Game theory has
been formally studied by influential minds since the early 1900s, but only in the last few decades
has it been used as a basis for automated agents to reason about the complexities of the world,
mainly because it took that long to develop the requisite computational power. For a long time,
game theory was relegated to games, economics, and political strategy, but now it is becoming
essential in our daily interactions with smart devices. Presented are the influential people and
ideas that have led to the innovation of computer agents that interact strategically with other
rational agents as well as humans. In this journey through time, important concepts in game
theory and important properties of game theoretic agents will be highlighted, along with the
influential people who worked to make these concepts and properties a reality.

“WHY SHOULD I CARE about game theoretic
agents?” you might ask. Well, for one thing,
they care a lot about you. They analyze your
moves, watch your choices, and make decisions
that impact your life in a major way. You are
being manipulated or observed by strategic agents
almost every time you go online. For example,
recommendation systems analyze the statistics
of your actions, and neural networks identify
patterns in your behavior. However, what if they
could go one step farther, and play you like
they play a game of chess? Would your actions
truly be your own anymore? Game theory, at its
heart, tries to understand why the choices we
make matter, how others’ choices influence us,
and what are the idealistic, optimal, safe, or sane
choices to make. All choices have consequences,
and even the smallest of those consequences are
important to you because they affect your life
directly.

Agents

Agents are an encoding of a particular strategy
that reasons about and manipulates actions and
consequences. This encoding is called a policy.
A human or animal agent processes potential
actions and their consequences using a brain. As
humans, we rely on abstractions, assumptions,
and generalizations to weigh different options, the
cost or benefit of each action, and whether they
align with our priorities or meet our goals. In
a very similar way, agents also rely on abstrac-
tions, assumptions, and generalizations; however,
their ability to generalize comes with a price.
Generalizations don’t always work well for ex-
tended periods of time, or in different situations.
Nevertheless, they do often work, and there are
many theorems showing why and where certain
assumptions and generalizations hold true. This
paper explores fundamental concepts in game
theory and identifies important properties that are
commonly used in the creation of game-theoretic
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Table 1. A Sample Matrix Game
Player Column

Actions X Y

Row A 10, 2 20, 10
B 0, 20 15, 10

A sample matrix game. Row has actions A and B available
and Column has actions X and Y. Row player’s utility is
on the left, Column’s utility is on the right. This sample
illustrates the fact that games don’t have to be zero-sum.

Table 2. Prisoner’s Dilemma
Player Column

Actions Deviate Cooperate

Row Deviate -2, -2 -3, 0
Cooperate 0, -3 -1, -1

The prisoner’s dilemma. This matrix game is a simultaneous
action game, so both players must choose actions prior to
knowing what the other player chose. The best joint utility is
for both players to cooperate. Self-interested agents can do
better by deviating when the other player chooses cooperate.
However, if both players deviate, they both do worse.

agents.

Game Theory

Game Theory is a logical system of analysis
of interactions between agents who make rational
choices based on actions of themselves, actions
of others, and possible outcomes. Important in
this definition is the fact that the choices must
be rational, and the agents must assign some
value to possible outcomes. If the agents violate
these assumptions, the theorems and definitions
are assumed to be invalid, even though they might
hold true in certain cases.

Games
In order to discuss agents, we must first

discuss games and strategies. We study games
because they model the interaction between mul-
tiple parties who are not necessarily on the same
page. Games also involve strategy and reasoning,
and provide an interesting subject to analyze how
math can be used to help computers ‘reason’.

There are many types of games, and each
game can be classified in many different ways.
However, one thing they have in common is the
notion of actions and consequences. At distinct
points in a game, there are a set of actions avail-
able to both players, and consequences for those
actions. The consequences might have short-term
or long-term effects. The consequences of games

Table 3. Matching Pennies
Player Column

Actions Heads Tails

Row Heads 1, 1 -1, -1
Tails -1, -1 1, 1

The game Matching Pennies. The players earn money by
coordinating to play heads or tails, thus matching their
strategies.

Table 4. Chicken
Player Column

Actions Swerve Straight

Row Swerve 0, 0 -1, 1
Straight 1, -1 -100, -100

The game Chicken. There is a lot of motivation to avoid
crashing, and thus to cooperate by coordinating opposing
strategies. Either both players have to choose to swerve, or
only one or the other player does well.

are typically represented by a set of utilities
denoted ui for the agent’s utility, and u−i models
opposing players utility in two player games (uk
for 3+ player games). This notion of actions
and consequences, with utility tied to the conse-
quences of one’s actions, is familiar because we
deal with such strategic choices every day. This is
why games provide a good model to evaluate and
test agents. Games can be made to be arbitrarily
simple or complex to model different kinds of
interactions or situations that an agent in the real
world might have to deal with.

Two other classifications of games are impor-
tant for our purposes: normal-form vs extensive-
form games, and non-cooperative vs coopera-
tive games. Normal-form games are simplified
games that specify actions and consequences in
a form of a table. They have been the most
extensively studied. Extensive-form games, on
the other hand, model more complex aspects
of games such as imperfect information and
sequencing of moves. Cooperative games allow
alliances between groups of people, whereas non-
cooperative games do not permit coalitions to
form. In this article, we will explore the foun-
dations of game theoretic agents in normal-form,
non-cooperative games.

Normal-Form Games

Normal-form games are games with a single
state S and complete specification of payoffs to
each player for each strategy they can choose.
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Table 5. Rock, Paper, Scissors
Player Column

Actions Rock Paper Scissors

Row
Rock 0, 0 -1, 1 1, -1
Paper 1, -1 0, 0 -1, 1
Scissors -1, 1 1, -1 0, 0

The classic game of Rock, Paper, Scissors. Both players can
either choose rock, paper, or scissors. If they choose the same
action, the outcome is a draw. For each action there is one
action it wins against and one action it loses against.

There are a few common normal-form games
that are important to understanding and dis-
cussing non-cooperative game theory. I will rep-
resent them in the common format of a matrix
game, where the actions are enumerated for each
player: the ‘Row’ player abbreviated R and the
‘Column’ player abbreviated C. The rewards for
each joint action are specified in the matrix entry
for that joint action, with the row player’s reward
on the left, and the column player’s reward on
the right. An example matrix game is shown in
Table 1.

First and foremost is the prisoner’s dilemma,
represented in Table 2. In this game, the predica-
ment is that in order for both players to do well,
they must trust the other player not to defect.
However, if they choose that action, the rational
choice for the other self-interested agent would
be to defect and do better off, which in turn hurts
their opponent.

Other important games for understanding the
complexities of strategies and learning are the
games of Matching Pennies, Chicken, and Rock,
Paper, Scissors. These are shown in Tables 3,
4, and 5 respectively. Each of these games has
a unique strategic issue at play. Some games,
like Matching Pennies or the prisoner’s dilemma,
are exercises in cooperation. Other games, such
as Chicken, are exercises in coordination. Still
others, such as Rock, Paper, Scissors, seem to be
based off luck or random chance. With learning
agents, these games are typically played for a
predetermined number of rounds, to allow time
for learning and reacting to the other player’s
strategy and to see what the convergence, long-
term strategies, and behavior of the agents are.

Non-Cooperative Games
In order to understand the foundations of

Markov Game Theory and learning agents, we

first must discuss the strategy space of non-
cooperative games. The most basic assumption
of a non-cooperative game is that the agents
are in competition with each other, either be-
cause of the lack of actions that could lead
to cooperation, such as in the game of Rock,
Paper, Scissors, or because of a lack of ability
to communicate or coordinate. Coordination is
different from cooperation in the fact that you
can coordinate movements to achieve outcomes
that are not necessarily optimal in terms of co-
operation. Two kinds of games often discussed
are zero-sum games and general-sum games. A
zero-sum game is one where one player’s score
is just the negation of the other player’s score,
so their scores sum to zero. A general-sum game
can have some outcomes that sum to zero, but
generally they are more flexible, so that multiple
players can benefit from a single round. Rock,
Paper, Scissors, chess, and other common games
with a win-lose outcome are zero-sum games.
General-sum games are more likely to occur in
the real world scenarios, since the rewards are
more nuanced than just a win-loss situation.

Strategies
There are two types of strategies that are typ-

ically discussed in game theory: mixed strategies
and pure strategies. Strategies that are modeled
by a probability distribution over the action space
are called mixed strategies or strategy profiles. A
strategy where one action is chosen with proba-
bility of 1 and all other actions have probability
of 0 is called a pure strategy, but it is actually
just a special case of a mixed strategy. Many
people have been influential in our understanding
the characteristics of strategies in non-cooperative
games, most notably John von Neumann, Vilfredo
Pareto, and John Nash.

John von Neumann

One of the common strategies used in games
is called the MaxMin (or maximin) strategy,
which is the assumption that the other player
is in opposition to you. Proven in 1928 by the
inventor and mathematician John von Neumann
(shown in Figure 1) in his paper Zur Theorie der
Gesellschaftsspiele[1], the idea of this strategy
is to put a bound on the worst-case outcomes,
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Figure 1. Mathematician and Inventor John von Neu-
mann. John was influential in the development of the
computer and the field of game theory. His proof of
the maximin theorem in 1928 helped serve as a foun-
dation for understanding strategy and subsequent
Folk Theorems.

maximize the possible points you could achieve,
and simultaneously minimize the points of the
opposing player. The strategy is computed by
determining the action you can take that max-
imizes your outcome, by assuming that your
opponent will take the action that will minimize
your outcome. This reasoning is easily modeled
by a recursive algorithm on a game tree in turn-
taking games. However, in simultaneous-action
games, the reasoning is a little harder due to the
stochastic nature of the outcomes. For example,
if the Row player takes action A, the outcome
will vary depending on the choice of the Column
player, especially if there is no clear choice she
would make knowing your outcomes and prefer-
ences. She could choose a mixed strategy, which
would mean that the outcome is best modeled
by a probability distribution over the actions that
both you and the opponent choose. The solution
in a simultaneous-action game can be solved by
a linear program[2].

Unfortunately, the MaxMin strategy has a
problem: it is inherently pessimistic. For example,
in the game of Chicken, it will always choose the
swerve action since it assumes the other player
will always try to minimize his payoff. There are
other strategies that result in solutions that can
be at least as good as a MaxMin strategy. Let
us talk about the people behind these ideas and
the properties of the solution profiles they were
interested in.

Figure 2. Economists and mathematicians Vilfredo
Pareto (left) and John Nash (right). Each had a major
impact on economic and game theory, influencing
how we understand and talk about equilibrium strate-
gies in non-cooperative games.

Vilfredo Pareto

In 1906, Vilfredo Pareto (shown in Figure 2)
published his Manual of Political Economy[3],
[4]. In it, he reported his findings about how there
are certain places of equilibrium in society where
there is a local optimality. In other words, there
is no way to move from that position without
increasing or decreasing the welfare of all people.
Thus, if someone benefits, another person will
have lost something. This is not the same thing
as a zero-sum game, since both people could
have a positive outcome still, it is just about
the change in welfare. This principle is easily
seen in many games. There are often multiple
places of equilibrium in games where, if the
players are in a certain situation, they will not
both choose different situation. For example, in
the game of Chicken, if Row chooses the action
straight and Column chooses swerve, they are
in a situation where the Row player would not
choose to switch to any other outcome, even
though Column would prefer a different outcome.
The same reasoning follows for if the player’s
actions were reversed. These solutions are called
Pareto optimal solutions of the game, in honor of
Vilfredo Pareto.

John Nash

John Nash (shown in Figure 2), who won a
Nobel prize in economics for his work on Game
Theory, thought about the theory and mathematics
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Figure 3. In 1971, economist James Friedman pub-
lished his paper A non-cooperative equilibrium for
supergames. These equilibrium strategies were com-
monly known but never formally published until he
showed their existence in his proof. This strengthened
the result of the original Folk Theorem which was
widely known but never published.

behind non-cooperative games at Princeton Uni-
versity during his PhD. A mathematical genius,
he solved the problem of finding equilibrium
points in N-Person games [5] as part of his
dissertation on non-cooperative games in 1950.
These points are strategy profiles where neither
player would prefer to switch to a different strat-
egy profile unilaterally. It’s important to note the
differences between Nash equilibria and Pareto
optimal solutions. Nash equilibria only consider
one person being able to change their decision,
whereas Pareto optimal solutions consider all
other potential payoff combinations. For deter-
mining if a point is a Nash equilibria, only
one person has to see something more desirable,
whereas with Pareto optimal, both players have to
agree that some point is better for both of them.
Interestingly, in the prisoner’s dilemma game, the
Pareto optimal solutions are the three solutions
where one or both people cooperate, whereas
the Nash equilibrium is the solution where both
deviate.

Folk Theorem

In 1971, James Friedman (shown in Figure
3) built off the principles discussed in the pre-
vious section and proved that any payoff above
the MinMax value1 for both players could be
sustained as a Nash equilibrium of an infinitely
repeated game[6]. The result relies on the fact

1the payoffs of the maximin strategy for each respective player

that a player can hold a threat of punishment
over another player if they do not stick to the
equilibrium strategy. The player can thus drive the
payoffs to at least the minimax value, and can go
even further by not being rational, reducing both
players’ scores. Although most games we play
aren’t repeated infinitely, many do have rounds,
and not letting the players know the number of
rounds has a similar effect.

Learning Agents
Knowing the aforementioned strategies does

help in designing an agent. However, there are
many reasons why that knowledge is not enough.
For example, even though we can guarantee a
minimax outcome in a game, a good agent should
be able to do better than obtain its best worse-
case outcome all of the time. Ideally, it should
do better than that most of the time. Also, not
every opponent will be completely rational, nor
will it be able to compute the full game. For
humans, this is especially pertinent, since it is
hard for us to think several moves in advance.
An agent should be able to learn based off the
common actions of its opponent, and then apply
those strategies to improve its performance in the
future. Also, for complex games, it is intractable
to compute some of these solutions, and thus the
agent needs to be able to reason about the game
in an abstract way.

Markov Decision Processes

To understand this new representation of
games for learning agents, we must first under-
stand what a Markov Decision Process (MDP)
is. In 1957, Richard Bellman (shown in Figure
4), then at The Rand Cooperation, described
non-linear recurrence relations and a way to
solve them using what is now known as ‘value
iteration’[7]. These non-linear recurrence rela-
tions described previously by Russian mathemati-
cian Andrey Markov say that each state can be
described as a transition from a previous state.
They are recurrent because the current state de-
pends on all past states through a recurrence re-
lation through the transition function, and doesn’t
depend on past states directly. Value Iteration
shows how to ‘solve’ these recurrence relations to
find optimal properties. A common formulation
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of the problem is as follows: Take Q to be
the property that can be described through this
recurrence relation, S to be the set of all states,
A to be the set of all actions, T to be the transition
function that specifies the probability of being
in a new state s′ given a particular state action
pair (s, a), and R to be the instantaneous value
of Q for that state, dependant on a particular state
action pair (s, a). In addition, take γ as a discount
factor based off the weighting of instantaneous
versus long-term value of Q. Then the value of
Q for a particular state action pair (s, a) can be
specified as the following recurrence relation that
will converge depending on the value of γ:

(1)Qk+1(s, a) = R(s, a) + γ ∗
∑
s′

T (s′, s, a)

∗ Vk(s′), for k >= 0

(2)Vk(s) = max
a
Qk(s, a), for k > 0

In layman’s terms, the value of a state transition
is the sum of the instantaneous reward of the
transition and the probability of that transition,
multiplied by the discounted value of being in
the new state. The value of being in a state is
the value of the taking the action that maximizes
the value of state transition from the current state.
This mutually recursive relation, converges when
λ < 1.

Markov Game Abstraction

The Markov abstraction of games, introduced
by Littman[2] (shown in Figure 4) in 1994, allows
us to define learning algorithms on games that
have a certain structure. This structure is defined
as the quadruple

{S,A, T : P (s′|s, a), R : R(s, a)},

where S is the set of states, A is the set of
joint actions, T is the transition function with P
being a discrete probability distribution over all
states conditioned on the joint action and prior
state (s, a), and R is the reward function based
on the prior state and action (s, a). Of particular
note is the set of joint actions A. In a turn-
taking game, the joint action space will contain
a no-op action for the player whose turn it is
not; however, in a simultaneous-action game, the

Figure 4. Richard Bellman (left) and Michael Littman
(right). Richard Bellman from The RAND Coopera-
tion was instrumental in creating algorithms to solve
Markov Decision Processes (MDP)s. Michael Littman
from Brown University used Richard Bellmans’ ideas
to create a way of modeling games after MDPs to
apply convergent iterative algorithms to help agents
learn rational policies.

joint action space will contain the product of the
action spaces of each of the players who can
move simultaneously: (i.e. {Ai X A−i} for a
two player game). Here, I deviate in notation
from Littman, who specified the actions of both
player’s separately rather than creating a joint
action space.

The reason Markov games are so powerful
is that they allow us to utilize tools that exist
for other Markov processes for games, such as
the method of value iteration describe previously.
You’ll notice that the main difference in defini-
tions between a Markov Game and a MDP is that
the agent doesn’t control the whole action space.
In fact, this formulation is a strict generalization
of MDP’s when the other player doesn’t have
any actions, and matrix games when there is only
one state. By knowing the instantaneous values of
any state transition, you can then determine what
other states are desirable to be in, and that will
lead to you the optimal policy of which actions
to choose in which states.

Using the technique of value iteration, we can
rephrase the value iteration equations to account
for two players in a maximin game as follows:
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(3)
Qk+1(s, a, a−i) = R(s, a, a−i) + γ

∗
∑
s′

T (s′, s, a, a−i)

∗ Vk(s′), for k >= 0

(4)Vk(s) = max
π∈P (A)

min
a−i∈A−i

∑
a∈A

Qk(s, a, a−i),

for k > 0

Note that the only changes are that the other
agent’s actions are taken into account and that the
maximum is over all probability distributions of
actions that could be taken. A specific probability
distribution for which action to take in each
state, denoted as π, is found that maximizes the
equation for V .

Desired Properties of Learning Agents

There are many desired properties of learning
agents. Some are viewed as more important than
others, and for some it is questioned whether they
are really even important at all. The following
section will explain in depth a few common
properties discussed in the literature.

Convergence Convergence is the property that
the agent should learn, or converge, to a good
solution or strategy quickly, and not be stuck
in a loop of changing between sub-optimal poli-
cies. In other words, the learning process should
produce a sequence of policies whose optimality
increases monotonically. As far as convergence is
concerned, converging faster is more desirable, as
long as the convergence still is monotonic.

Convergence is one property that is frequently
looked at in developing agents, because a non-
convergent algorithm could get stuck in a local
minimum and not make any progress. However,
it is a property that is also debated, since an
algorithm that converges struggles to adapt to
fast-changing strategies of an opponent or han-
dling many different kinds of agents. Most papers
present empirical tests for convergence in self-
play and thus make it a weaker property than if
theoretically proven.

Figure 5. Bowling is an important contributor in the
field of game-theoretic agents, introducing agents that
address convergence and regret.

Rationality Rationality is when the agent learns
a best response to the other player, assuming the
other player’s policy does not change (i.e., it is
stationary).

Optimality Foremost among desired properties
of learning agents is the idea of optimality. Opti-
mality in learning is often defined as being able
to learn a strategy that achieves a Pareto optimal
score, i.e., a score that is not Pareto dominated.

Sometimes this definition of optimality can
be relaxed to also include Nash equilibria. As
discussed, when talking about the Folk Theorem,
any score above the minimax values can be sus-
tained as a Nash equilibrium in a repeated game.

Optimality and rationality are closely related,
so sometimes it is hard to draw the boundary
between the two. The main difference is that
rationality only strives to achieve best response
results for the one player. In some papers, this
would be called optimality. However, in others,
optimality looks at the total payoffs for both
players, and tries to maximize the social welfare
by obtaining results that are Pareto-optimal or
Pareto-optimal within some margin ε.

Regret Another interesting property is the con-
cept of regret, introduced by Sergiu Hart and
Andreu Mas-Colell[10] in the year 2000. Regret
can be measured in many ways, but the most
general definition is determining if there was a
different strategy that you could have played than
the one you did last round that would have been
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Figure 6. Graphs from Bowling’s WoLF paper [8] showing the convergence of WoLF in a) Matching Pennies
and b) Rock, Paper, Scissors. WoLF is denoted WoLF-PHC in the graph, and a similar algorithm that doesn’t
use the Win or Lose Fast principle is just called PHC (Policy Hill-Climbing).

Figure 7. Graphs from Bowling’s GIGA-WoLF paper
[9] showing the convergence of a) the GIGA agent
which is a agent based on no-regret and b) the
convergence of GIGA-WoLF which keeps the no-
regret property from the former, while also addressing
convergence via the Win or Lose Fast principle.

better given the entire history of play. Regret
would be the amount you lost by playing that
previous strategy rather than the better strategy.

Minimax-Q

Value iteration is a great way to calculate
the Q-values for different state action pairs, and
it has the property of convergence. However, it
is not necessarily practical or computationally
tractable to iterate until convergence, especially
when the state space is large. Littman, in his paper
introducing the Markov game format[2] proposes
to use the Q-learning approach to solve the same
problem. In this approach, the same equations
are used as the value iteration equations from
above, but the updates are made asynchronously
whenever an agent tests an action in a state. The
update is performed only for the state action pair

that is attempted. Since the transition probability
is related to the actual observed outcome, the
formulation is strictly equivalent to value iteration
and will obtain the same Q-values in the limit.
There are two additional parameters that this
introduces, including a learning rate and decay
factor for the learning rate, and an exploration
versus exploit term which determines whether
to take an action at random or use the learned
model. It differs from the traditional Q-learning
algorithm in the fact that it takes the minimax
assumption into account, and therefore does much
better about hedging its bets, instead of assuming
the other agent won’t change it’s strategy.

WoLF
A significant contribution after the formu-

lation of the minimax-Q learning agent is the
WoLF (Win or Learn Fast) agent developed at
Carnegie Mellon University by Michael Bowling
and Manuela Veloso[8] in 2001. It strives to
achieve not only convergence, but also rationality.
This is stronger than just achieving the minimax
solution. It builds off the Q-Learning formulation
by keeping track of the policy rather than just the
Q-values. That is, it keeps track of the probability
distribution over actions to select, and adjusts that
probability distribution based off the learning. In
addition, it keeps track of the average policy and
changes the policy more quickly when it is losing,
compared to when it wins. This is achieved by
having two different learning rates. It compares
the average policy to the expected value of play-
ing the current policy in the current state, and
based on whether the current policy out-performs
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the average policy it will choose between the two
learning rates. The average policy is a running
average of all prior policies. Shown in Figure
6 we see that the algorithm converges quickly,
unlike other agents that can get stuck in a loop
by always switching strategies.

GIGA-WoLF

GIGA WoLF[9] developed in 2005 by Bowl-
ing is a variant of WoLF that is an example of an
algorithm that satisfies the property of no-regret.
In other words, it plays better than any static
strategy could. It also has the property of conver-
gence, converging in self-play to a static strategy
as shown in Figure 7. GIGA-WoLF works by
essentially keeping two policies that get updated
independently. It improves on an earlier agent
called GIGA that has the no-regret property. It
addresses convergence through the Win or Lose
Fast principle by updating the policy at different
speeds depending on the outcome. At the same
time, it ensures that it is improving with respect
to regret by incorporating another independently-
updated policy that keeps track of the regret.

Conclusion
Agents will always be a part of the society that

we live in. Learning agents can be powerful, and
agents that learn based off of game theory are
even more powerful. Though the Markov game
framework introduced by Littman is not the only
way to think about games, it encompasses a large
variety of games that can be applied to real-life
problems. This simple abstraction leads to agents
that can reason about how to maximize their own
rewards or to jointly optimize the rewards to
each individual agent. Understanding the learning
characteristics and payoff characteristics of each
learning agent allows us to choose an appropriate
learning agent for each real-life application. Each
agent has tradeoffs in their convergence, rational-
ity, optimality, or regret characteristics based on
the opponent they are facing. For a continually-
learning agent that needs to adapt to changing
circumstances, the convergence property might
be less useful than an agent that acts optimally
most of the time. A regret-based heuristic might
be best applied when the other agent plays a
largely static strategy or changes its strategy less

frequently than the agent does. It is important to
analyze the contexts in which an agent does well,
which most papers highlight. Equally important,
however, is understanding the faults of each agent
including which assumptions it makes, or which
properties it prioritizes over others. Every agent
has a weakness, just like we do. A game theoretic
agent might be able to manipulate your actions on
the internet, but you have the power to subvert
the agent by understanding how it works and
changing tactics accordingly.
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Abstract—Sorting is a common problem that computer programs frequently encounter. Since
the middle of the twentieth century, a variety of sorting algorithms have been developed,
documented, analyzed, and modified to solve this problem. Each algorithm has performance
strengths and weaknesses. To better analyze algorithms, a notation called ”Big O” has been
developed. Big O is useful for conveying how the performance of a sorting algorithm will be
affected by the size of the list to be sorted. Big O can be expressed in terms of a variety of
factors, such as memory requirements, steps, and operations. Having such knowledge is useful
for determining how an algorithm may be used or modified to achieve better performance. Data
structures and traversal methods can impact an algorithm’s performance. Creative modifications
can yield a high probability of significantly improved performance. Algorithms can be combined
to produce hybrids that mitigate each algorithm’s performance drawbacks and utilize each
algorithm’s performance advantages.

SORTING GROUPS OF ITEMS is a process
familiar to many. Students are sorted by last name
for roll call; people are sorted by age to determine
who goes first in a game; and shopping items
can be sorted by a variety of preferences, such as
price, customer ratings, and brand. Sorting can be
tedious and time consuming, even when there are
relatively few items to sort. Fortunately, sorting
is a task well suited to computers.

Many sorting algorithms have been developed
and studied in depth. Each method has certain
advantages and disadvantages. Although sorting
may seem like a simple task, requirements of
the various sorting algorithms and limitations of
computer hardware necessitate careful analysis
and thoughtful selection of suitable algorithms.
A primary consideration is computational com-
plexity, which deals with the resources required
by a given algorithm.

Space and time are two of the most common

resources that are accounted for in computational
complexity. Space refers to the amount of mem-
ory that is required. Time refers to the number of
steps that are performed. Other things that can be
accounted for when analyzing the computational
complexity of sorting algorithms are the number
of swaps and comparisons that are performed.

Big O notation, which was first introduced
by Paul Bachmann[1], is a useful notation for
expressing computational complexity. It gives an
approximation of how the performance of an
algorithm is affected by the size of a problem.
The size of a sorting problem is the size of the
list that is to be sorted. A sorting algorithm’s per-
formance can be measured in terms of previously
mentioned things, such as space, time, swaps, and
comparisons.

Some of the more well-established compari-
son sorting algorithms can be grouped into simple
and efficient sorting algorithms. Simple sorting
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algorithms tend to perform poorly on large lists
when compared to their efficient sorting algorithm
competitors, but they sometimes have other de-
sirable traits. For example, a sorting algorithm is
called ”online” if it can successfully sort a list
even after an item has been appended to the list
while the list was being sorted.

Although there are standard methods of im-
plementing sorting algorithms, creative liberty
can be taken to increase the probability of high
performance. Sorting algorithms can also be com-
bined to form hybrid sorting algorithms, allowing
judicious application of each sorting algorithm
in order to take advantage of its performance
benefits while mitigating or eliminating the per-
formance drawbacks of another.

Big O Notation
Donald Knuth made significant contributions

to the computer science discipline by laying out
many algorithms and using Big O notation.[2] Big
O notation is written as O(f(n)), and Knuth’s
definition is ”There are positive constants M
and n0 such that the number xn represented
by (O(f(n)) satisfies the condition |xn| ≤
M |f(n)|, for all integers n ≥ n0.” In practice,
Big O is used as an approximate measure of
how an algorithm’s performance is affected by
the size of the problem it is solving. Relatively
insignificant details are often left out of the
Big O representation. For example, if a function
were to perform one step per value in n and
an additional 5 steps, the Big O representation
would be commonly expressed as O(n) rather
than O(n + 5). This is because as the value
n grows, the 5 remains constant and becomes
relatively insignificant. Some examples of Big
O are shown in Figure 1. Notice that constant
factors are omitted, sums of the same function
are reduced to f(n), and each distinct function is
expressed independently of other functions.

To put Big O into a more relatable context,
consider the task of washing dishes. The time
complexity of washing dishes can be analyzed in
terms of wash cycles. If the dishes are washed
by hand, then one dish can be washed per wash
cycle since a person can only wash one dish at
a time. In Big O, the number of wash cycles
would be expressed as O(n), where n is the

Figure 1. Some common Big O operations[2]

number of dishes that need to be washed. O(n) is
commonly called ”linear time complexity” since
the number of steps to accomplish a task increases
proportional to the size of the problem. The graph
for this would look like a straight line with an
upward slope. If the dishes are washed using a
dishwasher, then many dishes can be washed per
wash cycle. The number of wash cycles when
using a dishwasher would be expressed in Big
O as O(1), assuming the number of dishes to
be washed does not exceed the capacity of the
dishwasher. This is commonly called ”constant
time complexity” since the number of steps to
accomplish a task remains the same regardless of
the size of the problem. The graph for this would
look like a flat line.

O(1) time complexity appears to be better
than O(n) time complexity since many dishes can
be washed simultaneously. If the dishwasher is
capable of washing dozens or hundreds of dishes,
then the dishwasher may very well be worth it.
Suppose, however, that only a few dishes need
to be washed. If a person can wash one dish fast
enough, then enough time might be saved by hand
washing those few dishes to be worth the effort.
There are many other Big O expressions that
are commonly used when analyzing algorithms.
Figure 2 shows some Big O graphs.

Sorting Algorithms

Several fundamental sorting algorithms are
discussed in the following sections. Each section
will be dedicated to a single sorting algorithm
and may include key points such as a description
of the algorithm’s various procedures, an analysis
of its computational complexity, and other key
aspects of the algorithm. The list in Figure 3 will
be used to help describe the algorithms.
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Figure 2. Graphs of common Big O expressions. As
n grows, n2 grows fastest, followed by n log n, then
n, and log n. The constant function f(n) = 1 is not
affected by the size of n. Also notice that for very small
values of n, the faster growing graphs, which are less
efficient on large values of n, may perform better than
the other graphs.

The Big O representation of an algorithm’s
space complexity sometimes omits the space re-
quired to store the original list. In this paper, that
space is included. For example, if the amount
of additional memory that a sorting algorithm
requires is constant regardless of the size of the
list to be sorted, then O(n) will represent the
space complexity rather than O(1).

Figure 3. The numbers 1 through 10 in an unsorted
list

Insertion Sort

Insertion sort (see Figure 4) is a simple sorting
algorithm. To begin, it makes two partitions of a
list. One partition is sorted, and the other is not.
At the beginning, the sorted partition contains the
first item in the list and the unsorted partition
contains the rest. It iterates over the unsorted
partition, putting the next unsorted item into its
place in the sorted partition. The unsorted item’s
new position is determined by comparing the
unsorted item to each item in the sorted partition,
beginning from the end, until an item that is less
than or equal to the unsorted item is found. The
unsorted item is placed behind that sorted item,
making the unsorted item now a sorted item. Of
course, this might not be the final position for

that item since it would be pushed back once per
remaining unsorted item that is less than it.

Figure 4. Insertion sort, as shown by Donald Knuth in
The Art of Computer Programming: Volume 3: Sorting
and Searching[3]

Like other simple sorting algorithms, insertion
sort’s time complexity would be represented in
Big O notation as O(n2). This is due to the nested
looping structure. There is one loop, called the
outer loop, to iterate over the unsorted partition
of the list, and another loop, called the inner
loop, to iterate over the sorted partition of the list.
The inner loop is performed for each iteration of
the outer loop, so the time complexity will be
determined by multiplying the time complexity
of the inner loop by the time complexity of the
outer loop. The outer loop iterates approximately
n times, and the inner loop potentially iterates
over all the items in the sorted partition of size
n− 1 on the last iteration of the outer loop. The
result is n(n − 1). Big O notation ignores the
constant −1 since n is higher order, so it would
be written as O(n2).

Insertion sort is done in-place. It only requires
the amount of space to store the list that is
being sorted and the space required to support
the looping structures, comparisons, and swaps.
O(n) space is required to store the list. O(1)
space is required for the supporting operations.
The space required for the supporting operations
is ignored because it is lower order than the space
required to store the list, so the overall space
complexity is O(n).

Insertion sort is a stable sort. This means that
the order of equivalent items does not change.
Suppose item a and b are equal and that a came
before item b prior to sorting the list. After sorting
the list, item a will still be before item b. Insertion
sort is also online, meaning that an item can be
appended to the end of the list while the list is
being sorted and the algorithm will still sort it
properly. It is also adaptive, meaning the original
order of items in the list affects its performance.
Consider a list where the first half of its items
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happened to be sorted before being provided to
insertion sort. Insertion sort will compare each
of those items to one item (the item immediately
before it), perform no swaps, and move on to the
next item. This is far better than its performance
on items that are sorted in reverse; each unsorted
item will be compared to and swapped with
every sorted item. A presorted list is the best-case
scenario, resulting in O(n) comparisons and no
swaps.

Data structures available to computers allow
for improvements to be made to insertion sort.
Linked lists allow for improved swap perfor-
mance, and binary search allows for quickly
finding the new location for an item.

Items in a linked list are not necessarily stored
next to each other within a computer’s memory,
as the items in Figure 3 appear to be. A visual
representation of a linked list is shown in Figure
5. The arrows represent links that maintain the
order in which items appear in the list.

Figure 5. A linked list built from the list in Figure 3

A disadvantage to the linked list data structure
is the speed of accessing an item in the list.
Suppose, for example, that a program will retrieve
the item in the fourth position in the list. If the
items are stored next to each other in a computer’s
memory, then the program can simply leap from
the first item in the list straight to the fourth
item. Accessing any given item in such a list
has O(1) time complexity since the item can be
found in a single step regardless of its position
within the list. To retrieve the fourth item in a
linked list, however, is not so simple; the program
begins at the first item in the list, uses the first
item’s link to find the second item, then uses
the second item’s link to find the third item, and
then uses the third item’s link to find the fourth
item. Accessing any given item in a linked list
has O(n) time complexity since it must traverse
some fraction of the total number of links to find
the item. Fortunately, this inefficiency does not
affect insertion sort, since both of insertion sort’s
loops iterate over the items in a list one at a time,
anyway.

An advantage of the linked list data structure
is the ease of moving items. Suppose the sixth

item in a list is to be placed between the first and
second items. A list with items stored next to each
other must shift the second through the fifth items
over one position, then put the item that was in
the sixth position into the second position. This
operation has O(n) time complexity, since the
number of items to be shifted is some fraction of
the total number of items. A linked list, on the
other hand, simply breaks and reforms the links
for the sixth and second items. This operation has
O(1) time complexity, since there is a constant
number of links to break and reform. This is very
advantageous for insertion sort since the number
of swaps drops by a factor of n, reducing the
swap complexity from O(n2) to O(n).

The number of comparisons can be reduced
from O(n2) to O(n log n) by using a binary
search. A binary search is performed on a sorted
list by repeatedly comparing an unsorted item to
the item that is in the middle of the list or, if
the list has an odd number of items, to an item
that is as close to the middle as can be. If the
unsorted item is larger than the approximate mid-
dle item, then binary search continues the same
method of finding and comparing with the items
that come after the approximate middle item. If
the unsorted item is smaller, then binary search
continues with the items that come before the
approximate middle item. Otherwise, the items
are equal, and the unsorted item can be inserted
after the approximate middle item. Binary search
is useful for lists that are stored with items side by
side in memory because it can take advantage of
the O(1) time complexity of accessing the middle
item. Unfortunately, it is not as useful with linked
lists because the time complexity of accessing the
middle item in a linked list is O(n).

In 2006, Bender, Farach-Colton, and Mosteiro
found that insertion sort could be modified to
achieve a high probability of O(n log n).[4] They
called this modification ”Gapped Insertion Sort”
or ”Library Sort.” The high probability of such
improved performance is achieved by leaving
gaps between items during the insertion process,
which results in fewer swaps.

Heapsort
Heapsort is an efficient sorting algorithm that

was invented by J. W. J. Williams.[5] It accom-
plishes its tasks in two parts. First, it partitions the
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list into a heap data structure, specifically a max-
heap, and a sorted partition. At the beginning, the
heap contains all the items and the sorted partition
is empty. The items in the heap are stored in
front of the items in the sorted partition. Once the
two partitions have been created, heapsort moves
one item at a time from the heap to the sorted
partition.

A heap is composed of nodes (items in a list).
Each node can be a parent node, a child node,
or both a parent and a child node. Each parent
node can have at most two child nodes. Each
child node is positioned relative to its parent node.
A max-heap requires that each parent node be
greater than or equal to its child nodes. Take, for
example, the list in Figure 3. Turning that list
into a max-heap would result in the list in Figure
6. Notice that the root node (the first item) in the
heap is the largest item. The root node is a parent
of the second and third nodes, the second node
is a parent of the fourth and fifth nodes, the third
node is a parent of the sixth and seventh nodes,
the fourth node is a parent of the eighth and ninth
nodes, and the fifth node is a parent of the tenth
node. The position of child nodes relative to their
parent nodes is calculated by 2p+ 1 for the first
child node and 2(p+1) for the second child node,
where p is the position of the parent node and
the position of the root node is 0. Notice that the
nodes in the heap are grouped by generation. A
convenient visualization of a heap is the tree in
Figure 7, where the numbers are nodes, and the
parent-child relations are indicated by lines from
one node to another.

Figure 6. A max-heap built from the list in Figure 3
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Figure 7. A tree representation of the max-heap
shown in Figure 6

Ryan Hayward and Colin McDiarmid[6]

found that Floyd’s[7] method of building a heap
was more efficient than the original method pro-
posed by Williams, so Floyd’s method was used
to build the heap in Figure 6 from the list in
Figure 3. First, the list was assumed to be a heap
that did not satisfy the max-heap requirement
that each parent node be greater than or equal
to its child nodes. Then, each parent node in the
heap, beginning from the last parent node and
ending with the root node, was sifted down the
tree until both of its child nodes were less than or
equal to it. Sifting parent nodes down the tree is
accomplished by swapping the parent node with
the larger of its child nodes, if it is less than at
least one of its child nodes. Then, it is swapped
in the same way with its new child nodes until
it has reached the bottom of the tree or both of
its child nodes are greater than or equal to it.
Building a max-heap using this method has O(n)
time complexity.

Once the max-heap has been built, items are
removed from the heap to the sorted partition
of the list. This is accomplished by repeatedly
performing two sets of operations until there are
no items left in the heap. First, the root node
of the heap is moved to the front of the sorted
partition. Then, the last node in the heap is moved
to the front of the heap, becoming the heap’s
new root node. The new root node is then sifted
down following the same procedure that was used
when sifting down parent nodes to build the heap.
The time complexity of this procedure is the time
complexity of moving the items from the heap
to the sorted partition multiplied by the time
complexity of sifting the last node in the heap
down from the root node. Moving the items has
O(n) time complexity, since n items are moved.
Due to the heap’s tree structure, the most items
that could be swapped with the root node as it is
sifted down is approximately log2(n), so sifting
the root node has O(log n) time complexity. This
yields a time complexity of O(n log n) to move
items from a heap to a sorted list.

The overall time complexity of heapsort is de-
termined by adding the time complexity of build-
ing a heap to the time complexity of moving items
from a heap to a sorted list. O(n) +O(n log n)
yields O(n log n). O(n) is left out because it is
lower order than O(n log n).
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Merge Sort

Merge sort (see Figure 8) is a well-known
efficient sorting algorithm. Rather than swapping
items in place, it recursively splits a list in two
until there is no more than one item in each list.
Then it merges these newly created lists together.
A list of size one is already sorted, and the
merging algorithm ensures that the resulting list is
also sorted. The first item in each list is compared,
and the smaller of the two is appended to the end
of a results list. This continues until one of the
lists is empty, at which point the remaining items
are all appended, maintaining their current order,
to the results list.

Figure 8. The merging algorithm of merge sort, as
shown by Donald Knuth in The Art of Computer
Programming: Volume 3: Sorting and Searching[3].
Variables i and j are initialized to the index of the
first item in their lists, and variables n and m are the
number of items in the lists that are being merged.

The time complexity for merge sort is
O(n log n). This can be seen by expressing the
running time of merge sort as a recurrence re-
lation, then by applying the master theorem.[8]
First, express the running time of merge sort as
the function T (n), where n is the number of
items in a list. Its recurrence relation would be
expressed as

T (n) = 2T (n/2) + n

2T (n/2) because the list is split into two
lists of approximately equal size, both of which
are then passed through merge sort again. +n
because each merge takes n assignments and no
more than n comparisons. The master theorem
shows that recurrence relations of the form

T (n) = kT (n/c) + f(n)

can be expressed in Big O terms as O(n log n).
The space complexity for merge sort is very

straightforward. It requires enough space to store
the original list, and an additional amount of
space to store the results list while merging two
lists together. The largest results list is the same
size as the original list, so merge sort requires
O(n) space.

There are many other efficient sorting algo-
rithms and variations of merge sort that are inter-
esting to compare with this description of merge
sort, such as heapsort, which has already been
discussed, and quick sort, which is discussed in
the next section. Factors such as space limitations
and order stability can affect which is best for
specific scenarios. Merge sort is a stable sort,
whereas quicksort may not be.

Quicksort
Quicksort is an efficient sorting algorithm that

was invented by Sir Charles Antony Richard
Hoare in 1959.[9] The algorithm recursively cre-
ates two partitions of a list based around pivot
values. Items in the list are swapped during the
partitioning processes. Once all the partitions
have been created, the algorithm is finished.

Although Hoare’s partitioning algorithm is
not the only partitioning algorithm that has been
developed for quicksort, it is used here.[10] First,
a pivot value is chosen. Second, coming from the
beginning and going to the end of the list, the
first location where an item is greater than the
pivot is found. Third, coming from the end and
going to the beginning of the list, the first location
where an item is less than the pivot is found.
The fourth step is conditional upon the locations
found in steps two and three. If the location found
in step two comes before the location found in
step three, then the items in those two locations
are swapped. Then, steps two, three, and four
are repeated, except the searches in steps two
and three begin from where they left off rather
than from the beginning and end of the list. Once
the locations found in steps two and three cross,
the list is partitioned between the two locations.
The partitioning process is then run on those
two new partitions. If a partition contains one
or fewer items, then it is not partitioned further.
If a partition contains a small number of items,
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then it may be preferable to sort it using some
other algorithm; although, doing so would make
the algorithm a hybrid of quicksort and whichever
algorithm is used for small lists.

The choice of pivot is crucial for quicksort
to be efficient. Without proper pivot selection,
it is even possible for the algorithm to never
reach completion. Suppose that the value 20 is
chosen as the pivot for the unsorted list in Figure
3. The partitioning algorithm would produce one
list that contains all the items from the original
and another that is empty. No sorting would
have been accomplished and the full original list
would need to be partitioned again. If pivot values
are chosen that are less than or greater than all
the items in the list, then the algorithm would
never reach completion. A good implementation
of quicksort produces excellent results. Figure 9
shows results of merge sort and quicksort on lists
of four different sizes.

Figure 9. Hoare’s comparison of the results of merge
sort and quicksort[10]

Timsort, A Hybrid Sorting Algorithm
Timsort is a hybrid sorting algorithm devel-

oped by Tim Peters for the Python programming
language.[11][12][13] It combines insertion sort
and merge sort and was designed to take advan-
tage of lists that contain runs of sorted items. A
run can be ascending, where each item is less
than or equal to the next, or it can be descend-
ing, where each item is greater than the next.
Descending runs are reversed to create ascending
runs. Since timsort is a stable sorting algorithm,
descending runs cannot have items that are equal;
otherwise, when a descending run is reversed, the
order of equal items would also be reversed.

One of the main differences between timsort
and merge sort is the method of creating sorted
sequences that will be merged. Merge sort recur-
sively divides a list into smaller lists and merges

them together. Timsort uses existing sorted runs
and creates other sorted runs using insertion sort
with binary search.

To create partitions of sorted runs, timsort first
determines a minimum run length. Next, it scans
through the list, looking for sorted runs that are
already present and are at least as long as the
minimum run length. If a run is shorter than
the minimum run length, then it is extended by
applying a binary insertion sort to all of the items
from the start of the run to the minimum run
length past the start of the run.

A variety of factors affect how timsort deter-
mines the minimum run length. Two considera-
tions when selecting the minimum run length are
the special cases when the size of the list is less
than sixty-four and when the size of the list is a
power of 2. When the size of the list is less than
sixty-four, the minimum run length is the size
of the list, meaning that insertion sort is used to
sort the entire list without performing any merges.
When the size of the list is a power of 2, using a
minimum run length that is equal to a power of
2 is preferred because it results in merging lists
of equal size.

Peters points out that a minimum run length
should be avoided if it satisfies the equation

q, r = divmod(N,minrun)

when q is a power of 2 and r > 0. divmod
is a Python function1, q is the quotient, r is the
remainder, minrun is the minimum run length,
and N is the size of the list.

The locations and lengths of runs that timsort
finds and creates are stored on a stack. A stack is
a data structure that follows the last in, first out
inventory methodology; that is, items are always
appended and removed at the top of the stack.
Two of the three topmost runs are merged when
either of two criteria are met. First, if the sum
of the lengths of the two topmost runs is greater
than or equal to the length of the third run, then
the second run is merged with the smaller of the
first and third runs. If the first and third runs are
equal in length, then the first and second runs are
used for the merge. Second, if the length of the

1https://www.programiz.com/python-programming/methods/
built-in/divmod
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second topmost run is less than the length of the
topmost run, then those two runs are merged.

Timsort and merge sort’s merge processes are
distinct. Timsort’s merge process uses a tempo-
rary work list that is no larger than the smaller of
the two runs being merged. Items of one run are
stored in the temporary work list to make room
for repositioning items in the original list. Then,
items are compared and moved in a similar way
to merge sort. Two items, one from each run, are
compared and one is moved, if necessary. This is
repeated until one run is empty. If the temporary
work list has any items left over, then they are
inserted into the remaining unfilled locations in
the original list. The merge is complete when the
temporary work list is empty.

Peters uses a hybrid of samplesort[14] to com-
pare the results of timsort’s performance. Timsort
proved to be clearly superior with lists that al-
ready contained many runs, which is what it was
designed to do. Timsort exemplifies thoughtful
consideration of real-world circumstances.

CONCLUSION
Problems that have existed since before the

age of computers require careful and thoughtful
analysis. Although a process may appear to be
simple, there are often hidden details that affect
its practicality. Big O notation facilitates simple
communication of key factors that affect a given
algorithm’s performance, which provides direc-
tion when deciding how to use or improve the
algorithm. Although an algorithm may appear to
be totally inferior to another, continually analyz-
ing it and researching new ways to implement and
utilize it is still valuable; it may be useful as a
hybrid, or new information might reveal more ef-
ficient implementations. The development of sort-
ing algorithms has benefited from such continual
analysis and experimentation. The performance of
insertion sort can be improved via linked lists,
binary search, and spacing. The hybrid sorting
algorithm, timsort, achieves phenomenal perfor-
mance on a variety of data sets by making use
of insertion sort’s good performance on small,
nearly sorted lists, while utilizing a highly effi-
cient merge process. It will be exciting to observe
the continued development of sorting algorithms
as new and creative methods are explored.
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History and Development of
Internet
Tarun Kumar Yadav
Brigham Young University

Abstract—Throughout human history, communication processes are evolved from physical
delivery of messages, which could take up to months, to message delivery through the Internet,
which takes less than a few seconds to reach any part of the world. Today, the Internet does
more than just connect computers. It connects people, lives, stories, and businesses. It is a
source of information, a social platform, and a business network. The Internet has diverse uses
depending on the needs of an individual or the setting. Regardless of the purpose, the
importance of the Internet in our daily lives is unquestionable. In this paper, we discuss the
history of the Internet and major milestones that helped build today’s Internet. We start with the
first communication devices, like the electrical telegraph. We then discuss the development of
significant protocols and their importance.

THE IMPACT OF THE INTERNET continues
to increase in our lives, society, and culture.
The very fact that we are taking online classes
from around the world together requires a tech-
nological infrastructure that was designed, engi-
neered, and built over the past seventy years.
To function in an information-centric world,
we need to understand the workings of net-
work technology. We must understand the con-
cepts/technology/protocols behind the Internet,
how it was created, who created it, and how it
works. Learning about the innovators who de-
veloped the Internet and Web technologies that
we use today would help us understand the re-
searchers’ critical thinking who evolved a net-
work of 4 computers (ARPANET) into a network
of billions of connected computers.

The Internet is a global network of networks,
a complex system that is evolved remarkably over
the last 70 years. It started as a US defense
project for the communication of armed forces
over the connected network [1]. The ARPANET
was the first connected network that connected
military installations, third-party contractors, and

a few universities in the US. By the mid-1970s,
ARPANET had connected NORSAR, a US-
Norwegian system designed to monitor seismic
activity from earthquakes or nuclear blasts, over
satellite, computers in London, and eventually,
other parts of Europe. After decades of research
and continuous evolution, the World Wide Web
was developed with the help of a man named
Tim Berners-Lee. The development of the HTTP
protocol led to the development of browsers and
with that, the popularity of computers skyrock-
eted. By 1992, more than a million computers
were connected — only two years after HTTP
was developed. Today the Internet is used directly
or indirectly for almost every service like Internet
Banking, Matrimonial Services, Online Shopping,
Online Ticket Booking, Online Bill Payment,
Data Sharing, and E-mail. Today’s Internet is
a complex system of complex interconnected
networks and Security protocols that all work
together. It uses TCP/IP as a standard network
protocol, TLS as a standard network security
protocol, DNS to retrieve IP addresses from do-
main names, FTP to retrieve a file, DHCP to
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assign an IP address to network endpoint, OSPF
for routing, SMTP for E-mail communication,
and UDP to transmit time-sensitive data. In the
following sections, we discuss the development
of these protocols and how they helped shape the
current Internet.

Communication before Internet

Physical message delivery
The early period of human history required

the physical delivery of messages to communi-
cate. People would travel to communicate mes-
sages or shouting had worked for a close neigh-
borhood. In the first century BCE, people started
using pigeons to send messages [2]. Pigeons
were effective as messengers due to their natural
homing abilities. The pigeons were transported
to a destination in cages, where they would be
attached with messages, then the pigeon would
naturally fly back to its home where the recipient
could read the message. One interesting fact is
Pigeons were used to deliver the results of the
first ancient Olympics in 776 BCE [3].

The pigeons used to fly with an average speed
of 50mph but couldn’t travel for long distances.
To communicate for long distances, people started
using horses [4]. The couriers on horseback could
travel for 2,000 miles in a week. In the 5th
century BCE, the Persian king Darius the Great
built the Royal Road to improve the couriers’
path. But still, the message delivery could take
up to a couple of weeks, depending on the roads
(rocky mountains takes longer) and climate.

Telegraph: Grandpa of the Internet
In 1838 Samuel Morse, along with other sci-

entists, developed the electric telegraph [5], which
revolutionized long-distance point-to-point mes-
sage communication. Morse sends the first mes-
sage in 1844 from Washington, DC, to Baltimore,
and by 1858 a telegraph line had been laid across
the Atlantic Ocean from the US to Europe. The
telegraph used Morse code to encode or decode
the message in the electric signal. Morse code
didn’t survive the transition of Analog signals
to Digital signals, but the binary coding (used
in digital signals) was founded based on Morse
code’s principles of using simple and easily dis-
tinguishable signals to encode messages. The

telegraph’s main problem was that it used Morse
code and was limited to sending and receiving
one message at a time.

Figure 1. The Telegraph

Telephone
The mechanical telephones based on sound

transmission through pipes and other physical
media (like wires) have been known for centuries.
During the 1870’s Alexander Graham Bell and
Elisha Gray independently invented the electrical
telephone and registered the patents within hours
of each other [6]. It led to a legal battle that
was won by Bell. The telephone emerged from
the making and successive improvements of the
electrical telegraphs.

A circuit switch connects the output of one
circuit to another’s input, allowing information
to be passed. In a circuit-switched network, end
clients have access to the circuit’s full bandwidth
during the communication. Before 1891, circuits
ran from point to point and were always con-
nected over a physical facility such as a pair of
wires. In the early days, this switching was done
by human operators physically putting in plugs to
connect lines.

In 1891, Almon Strowger revolutionized the
entire telephone system by inventing an automatic
telephone switching system [7] that allows people
to dial each other directly, thereby eliminating any
need for a telephone switchboard operator.

Development of the first Digital network
Like other evolution that happened in com-

puter science, the Internet is the result of the con-
stant development of new ideas. In this section,
we describe the ideas that lead us towards today’s
Internet.

112 THREADS



Figure 2. One of the original automatic circuit
switches

Information theory
In 1948, Claude Shannon, who is considered the
father of modern Information theory, defined a
formal way of studying communication chan-
nels [8] in his Information Theory paper. This
paper has been called ”The Magna Carta of the
Information Age”— meaning a founding docu-
ment that inaugurated an era. It took Shannon 10
years to develop this idea that all communicating
messages, irrelevant of the sender, receiver, and
length of the message, can be represented in
the form of bits. In this paper, he explains the
compression and encoding of bits for information
transmission with flawless accuracy. Shannon’s
paper has been considered a rare case where he
finds a field and solves all the major problems
in one stroke. This work is the reason for all the
further progress in digital communication.

The first electronic digital computer was de-
veloped in 1942 by John Vincent Atanasoff and
Clifford E. Berry, but the ideas for computer
communications started in the early 1960s.

Packet switching
The credit for inventing packet-switching and
laying the Internet’s foundation can be given to
three people: Leonard Kleinrock, Donald Davies,
and Paul Baran.

In 1961, Leonard Kleinrock pioneers the
packet-switching concept in his Massachusetts In-
stitute of Technology (MIT) doctoral thesis about
queueing theory[ [9]]. There were a lot of com-
puters at MIT during the time Leonard Kleinrock

was doing his doctorate. He realized that eventu-
ally, all these computers need to communicate.
And the mathematical descriptions of existing
networks like telephone exchanges, where there
is only a single node to node communication
(through circuit switching), would be inadequate
because there would be many nodes in the future.
Therefore, he extended the mathematical descrip-
tion of queuing theory to work with large com-
plex networks and described the mathematical
description of packet switching [10], where each
data stream is broken into discrete packets for
transmission.

Figure 3. Packet Switching

Between 1962 and 1964, Paul Baran invented
the concept of message blocks [11]. His idea was
to break the transmitted message into smaller
packets, which could be sent to the destination
independently. The packets are combined at the
receiver end to reconstruct the original message.
In fig 3, when any two hosts communicate using
the packet switching approach, the multiple pack-
ets in between two hosts can take any route in
between independently and reach the destination,
where they are reconstructed. This approach of
message blocks allows using dedicated lines for
any number of circuits, unlike circuit switching,
where one dedicated line allows one circuit. It in-
creased transmission capacity and created a flexi-
ble, reliable, and robust communications network.
Using this concept, he designed a decentralized
and interconnected system of networks. These are
the two essential properties that can even be seen
on today’s Internet. In 1965, Donald Davis in the
UK (at NPL) independently developed the same
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concepts and named it ”packet switching” [12],
which is the name that is used today for this
concept.

Character encoding

A character encoding defines the interpretation of
binary 0 and 1 sequences to characters. ASCII,
the first universal standard for character encod-
ing, was developed in 1963 by a joint industry-
government committee. It allowed computers
from different manufacturers to communicate.
Fig4 is a simpler version of the ASCII table
showing the mapping of only English letters to
binary. ASCII was the most common character
encoding on the World Wide Web until December
2007 [13], when UTF-8 encoding surpassed it;
UTF-8 is backward compatible with ASCII.

Figure 4. ASCII code table*

* Photo taken from https://www.haghish.com/statistics/stata-
blog/stata-programming/ascii characters.php

Wide-area network

In 1965, Lawrence Roberts & Thomas Marill
created the first Wide-area network connection
via long distant dial-up between a TX-2 com-
puter in Massachusetts and a Q-32 computer
in California. A wide-area network is a large
network of connected local area networks (LAN),
as shown in fig 5 and is spread over the globe.
During the communication, they also confirmed
that packet switching offers the most promising
communication model between computers.

Figure 5. Wide Area Network

Initial Ideas of the Internet
In 1968, Robert W. Taylor put out his ideas about
the future of the Internet and what shape it could
take. J.C.R. Licklider and Robert Taylor proposed
for the first time a networking experiment in
which the users from one location accessed the
computer at another site [14]. They explained in
their research how this can be done and what
could be the possible consequences while access-
ing a computer from another location.

The Internet prototype development started in
1969, funded by the Department of Defense, and
was named ARPANET. It used packet switching
to allow multiple computers to communicate over
a single network. The first communication on
ARPANET was done between two nodes (re-
search labs at UCLA and Stanford) on Oct 29,
1969. The first message they sent was ”LOGIN,”
but it was enough to crash the network. The Stan-
ford research lab’s computer only received the
first two characters of the message. ARPANET
became the center of the Internet’s future and
has been used by many researchers to develop
new ideas around it. Initially, ARPANET used the
Network Control Program for communications
protocols rather than TCP/IP (explained later).
In 1983, TCP/IP was incorporated in ARPANET,
starting the age of the modern Internet.

In 1973, Louis Pouzin, a French Computer
Scientist, designed the first packet communi-
cations network, CYCLADES [15]. This pro-
tocol was developed to explore alternatives to
the ARPANET’s early communication protocols
and improve network research in the commu-
nity. CYCLADES was the first implementation
of a network protocol stack where end nodes
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or hosts are responsible for reliable communica-
tion instead of the network itself. This network
was the first actual implementation of the pure
packet model, initially imagined and described
by Donald Davies. CYCLADES made significant
progress in network communication, but the re-
duction in funding for the project due to political
reasons marked its end. The European postal and
telecommunications authorities chose to adopt
the X.25 standard rather than packet switching
as their data transmission protocol. However, in
the later 1970s, the TCP/IP protocol has been
developed based on the key ideas derived from
CYCLADES. In the next section, we present the
details of TCP/IP.

TCP/IP
The TCP/IP is the set of protocols with

which two different network entities communi-
cate. Without the TCP/IP, the data communication
on the current Internet or Inter-Networking of the
devices would not be possible.

The development of TCP/IP started in the
1970s by a group headed by Vint Cerf (Stanford)
and Robert Kahn (DARPA) [16]. The purpose of
the protocol is to allow inter-network communi-
cation between diverse networks.

Development

The experiments started with a two-network
TCP/IP communication between Stanford and the
University College of London in 1975. Then,
In Nov 1977, a three-network TCP/IP test was
conducted between sites in the US, the UK, and
Norway. A computer called a router is provided
with an interface to each network. It forwards
network packets back and forth between them.
Originally a router was called gateway, but the
term was changed to avoid confusion with other
types of gateways.

The early versions of TCP/IP managed both
datagram transmission and routing in one pro-
tocol [17]. As the protocol grew, in 1978, the
Transmission Control Program Version 3 was
split into two distinct protocols, the Internet Pro-
tocol as a connection-less layer and the Transmis-
sion Control Protocol as a reliable connection-
oriented service. Version 4 of the TCP/IP was
abstracted into four layers of distinct protocols,

as shown in 6, and is known as Internet Pro-
tocol version 4 (IPv4). This protocol was then
incorporated into ARPANET on Jan 1, 1983,
and is still in use on the Internet, alongside
its current successor, Internet Protocol version 6
(IPv6). After IPv4, the communication between
multiple networks started, and then it evolved into
the modern Internet.

Key Architecture

The main principles that TCP/IP was built
upon are:

The end-to-end principle Initially, the Internet
started with the assumption of concentration only
on speed and simplicity by putting the mainte-
nance of state and overall intelligence at the edge
nodes. Real-world needs for firewalls, network
address translators, web content caches, and the
like have forced changes in this principle.

The robustness principle The implementation
must be conservative in its sending behavior (by
sending well-formed datagrams) and liberal in
receiving behavior, i.e., accept any datagram that
it can interpret.

Encapsulation It divides the protocol suite into
different layers depending on their functionality.
The layers individually process the data and pass
it to the next level. Each layer can be further
encapsulated.

Figure 6. TCP/IP layers*

* Photo taken from https://en.wikipedia.org

The TCP/IP is abstracted into four layers, each
with a particular job. The layers in the bottom-up
order are:
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Figure 7. TCP/IP data flow *

* Photo taken from https://en.wikipedia.org

The link layer defines the networking methods
within the scope of the local network link on
which hosts communicate without intervening
routers. This layer includes the protocols used
to describe the local network topology and the
interfaces needed to affect the transmission of
Internet layer datagrams to next-neighbor hosts
[18].

The link layer is the lowest layer of the
TCP/IP model that provides the functional and
procedural means to transfer data between two
network entities over the physical layer and possi-
bly correct errors in the physical transfer of data.
This layer is responsible for delivering frames
within a LAN. Inter-network routing is higher-
level functions allowing the link layer to focus on
local delivery, addressing, and media arbitration.

The data link layer is concerned with the
local delivery of frames between nodes on the
network’s same level. Data-link frames, the pro-
tocol’s data unit, do not cross the boundaries
of a local area network. Inter-network routing
and global addressing are higher-layer functions,
allowing data-link protocols to focus on local
delivery, addressing, and media arbitration by
handling frame collisions.

Examples of data link protocols are Ethernet
for local area networks (multi-node), the Point-

to-Point Protocol (PPP), HDLC, and ADCCP for
point-to-point (dual-node) connections.

The internet layer This layer provides inter-
network communication, i.e., connects multiple
networks through gateways. The protocols in this
layer are used to transfer network packets from
the sender’s node, across network boundaries,
to the destination node using their IP address.
Internet-layer protocols use IP-based packets.
This layer aims to transfer the packet to the des-
tined network through a set of routers in between
and then passes the packet to the Transport layer
of the destined node (shown in fig 7), which
handles further processing. The communication
within a network (LAN) is handled by the lower
layer, i.e., the link layer.

Primary examples of the Internet layer pro-
tocols are IPv4 and IPv6, which defines IP ad-
dresses. Its function in routing is to transport
datagrams to the next host, functioning as an IP
router with the connectivity to a network closer
to the final data destination. The Internet Control
Message Protocol (ICMP) is used for error and
diagnostic functions.

The transport layer This layer provides host-
to-host communication channel for the applica-
tions [19]. This layer’s services are connection-
oriented communication, reliability, flow control,
and congestion avoidance. There are two popular
transport layer protocols UDP (User datagram
protocol) and TCP (Transmission Control Pro-
tocol). The UDP provides unreliable connection-
less communication, whereas TCP provides flow-
control, connection establishment, and reliable
data transmission.

The application layer is the scope within which
applications, or processes, create user data, and
communicate this data to other applications on
another or the same host. The applications use
the underlying lower layers’ services, especially
the transport layer, which provides reliable or un-
reliable pipes to other processes. The communi-
cations partners are characterized by the applica-
tion architecture, such as the client-server model
and peer-to-peer networking. This is the layer in
which all application protocols, such as SMTP,
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FTP, SSH, and HTTP. Processes are addressed
via ports that essentially represent services.

The application layer is the highest abstraction
layer of the TCP/IP model, and it provides inter-
faces and protocols needed by the users. Some
of the services this layer provides are the user
interface of network services, used to develop
network-based applications, error handling, and
recovery of messages.

The examples of the application layer proto-
cols are HTTP, FTP, SMTP, DNS, TELNET, and
SNMP (Simple Network Management Protocol)

Era of the Modern Internet Begins

Network bridging and routing

A network bridge is a computer networking
device that creates a single aggregate network
from multiple communication networks or net-
work segments. This function is called network
bridging. Bridging is distinct from routing. Rout-
ing allows various networks to communicate in-
dependently and yet remain separate, whereas
bridging connects two different networks as if
they were a single network.

In the early days, network bridging for large
networks was difficult because of loops. The
loops could occur when there are multiple paths
in the network from the sender to the destination.
The multiple paths allow the intermediate node to
send the packet in any direction. The next node
might return the packet expecting the packet to
forward from another path. The packet goes in a
loop forever, doesn’t reach the destination, and
creates unnecessary congestion in the network.
In 1984, Radia Perlman invented the spanning-
tree protocol, a fundamental concept for today’s
network bridges. She used unique MAC addresses
of bridges in the network protocol to allow com-
munication within LAN. The algorithm is run on
all the bridges; the bridges together decide on one
root bridge in the network. Every bridge maps the
network and finds the shortest path to the root
bridge, which prevents communication through
other redundant paths.

Radia Perlman also made immense contri-
butions to many other areas of network design
and standardization, such as link-state routing

protocols. She designed IS-IS (Intermediate Sys-
tem to Intermediate System) protocol for routing
IP, which continues to flourish today. IS-IS is
a link-state routing protocol. Routers share the
topology with their nearest neighbors by flooding
it through AS(Autonomous System). This way,
every router in the network has a complete picture
of the topology of the AS. Using the topology
information, every router can calculate the path
to any other end node through the use of a variant
of the Dijkstra algorithm. While forwarding the
packet to the destination through the link-state
protocol, the next hop is selected based on the
best path calculated to the destination. The com-
plete topology access at each router allows the
router to choose a path based on any particular
criteria. It can be useful when the different quality
of services are provided depending on the source
or destination. However, the link-state routing
protocol has scalability issues. The increase in the
number of routers increases the topology updates’
size and frequency and the time to calculate the
path to the destination. Because of this scalability
problem, it is only used to route traffic within a
single Autonomous System.

Internet congestion Problem

In the late 1980s, due to many new nodes
connecting to the Internet, there was a major
traffic surge, and the Internet was on the verge of
collapsing. Between 1988 and 1989, Van Jacob-
son redesigned TCP/IP’s congestion control algo-
rithms [20] to handle the congestion better and is
said to have saved the Internet. The congestion
algorithms are still used in over 90% of Internet
hosts today.

Application Level protocols

Domain Name System
The IP address uniquely identifies every node in
the network, but it was difficult for the people
to remember them for every node; also, the IP
addresses were not static. In 1983, Paul Mock-
apetris, Jon Postel, and Craig Partridge created
the Domain Name System (DNS) [21], which
uses domain names to manage the increasing
number of nodes on the Internet by mapping the
domain names of a node to their IP address.
DNS is a distributed database implemented in
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a hierarch of name servers. Nameservers act as
a directory for the nodes registered with them.
In 1985, the first domain was registered: sym-
bolics.com, a domain belonging to a computer
manufacturer.

Figure 8. DNS lookup diagram *

* Photo taken from https://techcorpus.com/dns

Fig 8 explains the working of the DNS lookup
process. When a client types in example.com in
their browser, their device sends a DNS lookup
request to the DNS resolver that they are regis-
tered with. In most cases, the DNS resolver of
your Internet service provider (ISP). The DNS
resolver likely wouldn’t know the IP address
of the example.com, unless cached from previ-
ous requests. Whenever the DNS resolver gets
an unknown domain name, they query the root
Name server. The root name server forwards
the DNS resolver to the corresponding top-level
domain(TLD) name server i.e com in our case
by returning the IP address of the com name
server. Then, DNS resolver queries the TLD
name server, which gives the IP address of the
authoritative name server (which knows the IP
address of example.com in our case). In the last
step, the DNS resolver retrieves the IP address
of example.com from the authoritative server and
returns to the client. Then, the client would be
able to connect to the example.com

In 1998, Tan Tin Wee founded the multi-

lingual Internet DNS and was instrumental in
its internationalization. In the 1990s, under his
leadership, Singapore hosted the first Chinese and
Tamil websites.

In 1993, the IETF (Internet Engineering Task
Force) started discussing ideas to make the
DNS more secure. In 2005, they finally decided
on Domain Name System Security Extensions
(DNSSEC). It is a set of extensions for DNS to
provide the DNS clients authentication of DNS
data, authenticated denial of existence, and data
integrity, but not availability or confidentiality.

E-mail

In 1986, Craig Partridge designed how e-mail
is routed using domain names and named it
the Simple Message Transfer Protocol(SMTP).
SMTP is the basic standard for e-mail, and it still
exists today since the 1980’s in its original form.

Figure 9. SMTP message flow *

* Photo taken from https://www.afternerd.com/blog/smtp

Figure 10. SMTP sequence *

* Photo taken from https://www.afternerd.com/blog/smtp
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When a user sends an e-mail, it goes through
their mail server to the recipient’s mail server and
then eventually to the recipient’s client, as shown
in fig 9. The communication of sender’s client
to their mail server and between mail servers is
through SMTP, as shown in fig 10. The receiving
client uses the IMAP or POP3 protocol to retrieve
e-mails from their mail server whenever they need
it. IMAP and POP3 are the two most commonly
used Internet mail protocols for retrieving e-
mails.

Fig 10 shows the series of messages that
are communicated in SMTP. The sender’s client
sends an EHLO message to initiate the com-
munication and waits for the response before
sending the next message. The sender, in order,
sends FROM address, TO address, message, and
termination message.

The e-mail was developed without being con-
cerned about security. As the Internet started
growing, the era of digital crime started, forcing
the researchers to rethink the existing protocols
and add a security layer. In 1991 Philip Zimmer-
mann designed Pretty Good Privacy (PGP), an e-
mail encryption software package that’s published
for free. Originally designed as a human rights
tool, PGP becomes one of the most widely used
e-mail encryption software globally.

Figure 11. PGP working *

* Photo taken from https://en.wikipedia.org/wiki/Pretty
Good Privacy

The PGP works on the concept of public-
private cryptography. Every user in the system

creates a public-private key pair and uploads their
public key to an Internet database. When user
A sends an e-mail to user B, they first gener-
ate a symmetric key Sk, encrypts the message
with that Sk, encrypts the Sk with B’s public
key as shown in figure 11. User A sends the
encrypted message and the encrypted Sk to B
over the untrusted Internet. The user B decrypts
the Sk with their corresponding private key and
then decrypts the message with Sk. The security
guarantee of public-private cryptography is that
the data encrypted with a public key can only
be decrypted with the corresponding private key,
making PGP secure.

Search Engines

In 1989 Brewster Kahle invented the First Internet
Publishing system named WAIS (Wide Area In-
formation Server). It was one of the first programs
to make searchable data through a large network
by indexing it. Today’s search engines are built
upon the concepts of WAIS. Alan Emtage de-
veloped the world’s first Internet search engine,
called Archie, pioneering many techniques used
by search engines today. Archie was just an
index of File Transfer Protocol (FTP) sites. FTP
is essentially a way to transfer files between
computers. After a user finds the file through their
search keyword, they need to download the file
before seeing the file’s content. There was no
concept of natural language keywords in Archie;
therefore, the users were limited to only use one
word for their search.

World Wide Web

In 1990, Tim Berners-Lee and his colleagues
at CERN developed hypertext markup language
(HTML) and the uniform resource locator (URL),
giving birth to the World Wide Web. HTML is
a computer language that is invented to allow
website creation. These websites can then be
viewed by anyone else connected to the Internet.

In 1991, CERN introduced the World Wide
Web to the public. The World Wide Web (WWW)
is where URLs identify the web resources (like
google.com), which may be interlinked by hy-
pertext and accessible over the Internet. The
resources of the Web are transferred via the
Hypertext Transfer Protocol (HTTP). The HTTP
protocol, an application layer protocol that is sent
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Figure 12. HTTP *

* Photo taken from https://developer.mozilla.org/en-US/docs/
Web/HTTP/Overview

Figure 13. HTTP and layers *

* Photo taken from https://developer.mozilla.org/en-US/docs/
Web/HTTP/Overview

over TCP as shown in fig 13, allows retrieving
resources such as HTML documents from the
Web. HTTP is the communication foundation of
any data exchange on the Web. It is a client-
Server protocol, where the requests are initiated
by the recipient, usually through a web browser.
The document is received from a variety of dif-
ferent sub-documents and is reconstructed by the
browser using the HTTP, as shown in fig 12.
A few examples of different sub-documents in
an HTML page are images, videos, descriptions,
texts, and scripts.

Digital Subscriber line
Digital Subscriber line is why the Internet be-

came affordable in the 1990s and reached the en-
tire world. In 1993, John Cioffi, known as ”Father
of DSL”, developed DMT (Discrete Multitone)-
based DSL technology. His idea was to fit hun-
dreds of data channels alongside phone conversa-
tions without causing disturbances. Cioffi named
the technology DMT or Discrete Multitone. How-
ever, the high interference of the lines became a

problem. He built a device to switch data between
channels to prevent this, creating the first broad-
band modem. This broadband modem worked
for low rate data sending, but there was still
interference while high rate data sending. Joseph
Lechleider found that allocating high bandwidth
in one direction and lesser in the other direc-
tion could solve interference. This idea becomes
the basis of Asymmetric Digital Subscriber Line
technology(ADSL) and is excellent for people
who need to upload less data than download.

Later, John Cioffi also developed Very-high-
speed Digital Subscriber Line (VDSL) modems,
which could work with copper wires and optic
fiber, making VSDL much faster than ADSL
at download and upload speeds. However, the
VDSL only works for a shorter distance. The
ADSL and VDSL account for about 98% of the
world’s more than 500 million DSL connections.

Internet Security
There has always been a concern about the

security of networked computers. During the 70s
and 80s, researchers with access to the ”internet”
enjoyed playing practical jokes on each other
through the network. These jokes were harm-
less but exposed flaws in the security of the
ARPANET. Before the 90s, networks were rela-
tively uncommon, and the general public was not
made-up of heavy internet users, which limited
the risk and threat. During these times, security
was not as critical - however, with more and more
sensitive information being placed on networks,
it would grow in importance.

In the early 1990s, due to malicious behaviors
on the Internet, researchers started improving the
previous protocols with security in mind. Dr.
Stephen Kent designed and developed network
layer encryption, access control systems, stan-
dardized secure transport layer protocols, secure
e-mail technology, Public Key Infrastructure stan-
dards, and certification authority systems.

Voice over IP
In 1973, Bob McAuley, Ed Hofstetter, and

Charlie Radar developed the first voice packet
over ARPANET at MIT’s Lincoln Lab. Their
voice transmission used the Linear Predictive
Coding (LPC), a speech analysis technique that
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relies on the linear predictive model to process
and resynthesize compressed digital forms of
voice signals and speech. In 1974, Lincoln Lab
and Culler Harrison successfully transmitted test
voice data packets to one another. By 1976, Culler
Harrison and Lincoln Labs had a conference
call over LPC. In 1982, they achieved a major
milestone by using LPC to connect over a local
cable network, a mobile packet radio net, and
an interface with the PSTN (Public Switched
Telephone Network.)

In 1988, G.722 wideband audio codec was
developed, which have a much wider speech
bandwidth and was also able to sample audio
data two times as fast as was previously possible.
The fact that G.722 offers data rates of up to 64
kbit/s makes it ideal for VoIP communication —
especially those on local area networks. It was
rated as ”toll quality,” meaning its audio was
comparable to PSTN phone call quality.

In 1989, Brian C. Wiles created RASCAL,
the first system to send voice over Ethernet
networks successfully — their first VoIP appli-
cation, technically speaking. Later Wiles wrote
a decimation/expansion scheme that reduced the
necessary bandwidth from 64Kb/s to just 32 Kb/s.
He releases the program to the public domain
under the name NetFone, later known as Speak
Freely, which is the first software-based VoIP
phone.
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Early History of the Internet

Barbara Chamberlin
Brigham Young University

Abstract—The internet was the result of several visionaries. J.C.R. Licklider was the one who
originally wrote about an “Intergalactic Computer Network” and specified what that would entail.
Leonard Kleinrock and Lawrence Roberts did early work on packet switching. Robert Kahn and
Vincent Cerf designed the TCP/IP stack. Douglas Engelbart envisioned how the communication
and collaboration would become more important than computation. Tim Berners-Lee invented
the World Wide Web. All of them, as well as others, worked hard to make it a general purpose
network instead of specialized and proprietary.

OUR CURRENT TIME PERIOD is called the
Information Age, defined as “The modern age re-
garded as a time in which information has become
a commodity that is quickly and widely dissemi-
nated and easily available especially through the
use of computer technology.” [1] To some people,
the use of computers is difficult and taxing, while
to others it is so straightforward and obvious that
it is practically invisible. When people discuss the
cloud, and the internet, and the web, they often do
not understand where one piece ends and another
begins. Nevertheless, it is the internet that has
made this the Information Age. If all we had were
stand-alone computers, no matter how good they
were, they would still be limited in the amount of
data they could store, and the number of things
they could do. But with the ability to interface
seamlessly with other computers, we have access
to more knowledge than we know how to use.

The internet was created due to the need for
sharing resources. When computers were big, ex-
pensive, and rare, it was not cost effective to build
them everywhere they were wanted. Time sharing
was one way to allow multiple users to use the
same mainframe. But if one person wanted to use
multiple machines, he had to have a dedicated
connection to each one. Resource sharing is still
the biggest use of the internet, but it is a lot
less obvious. From the beginning, it was joint
efforts by government, industry, and academia

Figure 1. J. C. R. Licklider

working together that enabled the rapid progress
of networked communication [2]. Many networks
were created early on for specific purposes and
groups. Some of the designers recognized the
need to make a general purpose network. What
we have now is the result of visionaries who
actively sought to make the world a better place.

Vision

It was during the height of the cold war when
the Soviets surprised everyone by launching the
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Sputnik satellite. Suddenly defense from space-
based attacks became a primary concern. The
Advanced Research Projects Agency (ARPA) was
established in 1958 by President Eisenhower to
encourage research that the military could use.
ARPA had a good deal of latitude, and not much
bureaucracy to deal with [3]. One hurdle that
ARPA set out to solve was the communication
bottleneck. The telephone system and short-wave
radio were the only communication tools avail-
able. The telephone system was highly centralized
and susceptible to attack. Even if the telephone
system was not the target, it was still likely to be
knocked out as collateral damage [3].

In October 1962, J. C. R. Licklider was named
as the head of ARPA. He was a man of many
talents with degrees in Physics, Mathematics,
Psychology, and Psycho-acoustics. His interest in
IT began when he became an associate professor
at MIT in 1950, where he specialized in human
factors [4]. His unique background allowed him
to look at the future of IT instead of getting
bogged down in the nuts and bolts of current
research. In April 1963, he wrote a memo to col-
leagues in which he laid out the requirement for
what he called an “Intergalactic Computer Net-
work.” [5] This network would allow for infor-
mation search and retrieval, linked programs and
information, copying of programs or data from
one computer to another, storage of programs or
data, and remote execution of processes. He also
wrote of the need for standardized command and
control language and the eventual need to search
using natural language. Although he did not live
to see it happen, the internet as we use it today
has all of these capabilities that he described. He
would have been delighted to see cloud storage
and cloud computing come to fruition.

Licklider only stayed at ARPA for a few
years, but his vision remained. It was obvious
that the military needed this technology, not just
for communication, but also for efficiency. For
example, Robert Taylor, a successor of Licklider
at ARPA, had several terminals in his office,
each with a time-shared connection to a different
mainframe [3]. Each mainframe had a differ-
ent operating system with its own commands
for accessing needed information. With so many
computers and resources in different locations and

Figure 2. Leonard Kleinrock [6]

departments, but with overlapping needs, it was
clear that developing the same tools and data
at each location was not cost effective. It was
much better to find a way to share tools, data and
resources, so he and his successors organized and
funded the research that was required to make it
happen.

Foundations
Leonard Kleinrock was a graduate student

at MIT studying under Claude Shannon when
he began studying packet switching [7]. He did
not actually have a network to test his theories
on, however he was able to simulate it on the
TX-2, an early model transistor computer with
64K of RAM that took up most of one wall of
the room [8]. He believed that messages could
be sent in small pieces instead of large chunks.
Optimization of message sending implied that
smaller messages should be sent before longer
messages. Unfortunately, there was no way to
know the size of the messages. He realized that by
chopping them up, they would all become short
messages. If the whole message was small enough
to be sent in one piece, then it would be. If it was
larger than the maximum size limit, then the first
fragment would get sent, and the remainder would
go back to the end of the queue.

Kleinrock proved his theory first mathemati-
cally and then through simulation. He published
the first paper on “Information Flow in Large
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Figure 3. Lawrence Roberts [9]

Communication Nets” in July 1961. Other re-
searchers were studying the same thing simul-
taneously without anyone realizing it, and one
of them, the team from the National Physical
Laboratory in London, coined the term “packet
switching [2].” This process is still in use today
for internet communication.

Kleinrock was also friends and roommates
with Lawrence Roberts. Roberts used Kleinrock’s
work when he created the first Wide Area Net-
work with a colleague in California in 1965
using telephone lines [2]. They realized that it
could be viable, but not with telephones that
used circuit switching. In 1966 the Department
of Defense (DoD) wanted Roberts to oversee
their network research program. He refused to
go because he recognized that it would be a
management position, not engineering. The DoD
told Lincoln Labs, where Roberts worked, that
they would not get anymore funding unless he
went to ARPA. Thus coerced, Roberts moved
to ARPA specifically for the purpose of creating
their networking program [10]. He published his
“Plan for the ARPANET” in 1967. Apparently
it was more interesting than he had expected
it to be since he continued in that position for
several years. His biggest problem was getting
the various labs that were funded by ARPA to
be willing to spend time and money on this new
idea. Kleinrock at UCLA and Douglas Engelbart
at Stanford were the ones who stepped up and
made it happen [9].

Figure 4. Robert Kahn [11]

As initially suggested by Licklider, the project
was too big for one team, so the next big step
was contracted out to a team at Bolt, Beranek
and Newman (BBN). That team was responsible
for developing the packet switching hardware
called “Interface Message Processors (IMP).”
Since each computer at the time had its own op-
erating system, getting them to talk to each other
was a challenge. The IMP was an intermediate
step; they did not have to write a connection
program to every computer in the network, they
only had to write the connection to the IMP, and
all the IMPs could talk to the other IMPs without
trouble. The IMP was a “small” computer, only
3 feet by 7 feet, that would be provided by
ARPA for each mainframe [9]. A key player at
BBN was Robert Kahn. Between them, Roberts,
Kahn, Kleinrock and their teams designed and
built the pieces of the ARPANET, including the
decision to use a distributed network architecture
instead of a centrally controlled system[2]. The
distributed architecture of the internet is one of
the reasons that it is resilient to failure, and able
to incorporate technologies that are very old and
very new at the same time.

Kleinrock was the director of the Network
Measurement Center at UCLA. In September
1969 his lab was the first one to acquire an IMP,
and thereby became the first node of ARPANET.
Soon thereafter in October, Stanford Research
Institute (SRI) became the second node. A test
message was attempted. UCLA tried to send
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Figure 5. Leonard Kleinrock and the IMP [12]

“log” and SRI was supposed to send “in” but the
receiver crashed after the second letter. Eventu-
ally, of course, they repaired it, and successfully
connected both labs. By the end of 1969 UC
Santa Barbara and University of Utah became the
third and forth nodes respectively. Other univer-
sities and research groups joined over time, and
ARPANET soon contained dozens of nodes [2]
despite the fact that they did not yet have good
software for controlling it.

In December of 1970, the Network Working
Group finished writing the first Host-to-Host net-
work protocol for ARPANET and called it the
Network Control Protocol (NCP). It was refined
over the course of the next few years, and fi-
nally made communication across the ARPANET
available to applications. In October 1972, Kahn
performed a demonstration of ARPANET at the
International Computer Communication Confer-
ence and it was a huge success. The NCP how-
ever, had one big flaw: it was too tightly coupled
to ARPANET; it could not talk to any other
network [2].

Making it Useful
One of the first applications to use the NCP

was email. Time-shared computers already had
commands for sending private messages to other
users on the same machine, so it was no surprise
that people wanted to send messages to users on
other computers in the network. In March 1972,
Ray Tomlinson created two apps to send and

Figure 6. Vinton (Vint) Cerf [13]

read messages. It was quite dissimilar from the
email systems we use today, nevertheless it did
establish the ’@’ sign as the separator between
user name and host name. Roberts expanded on
Tomlinson’s work to create a utility that could
manage email communication. Since then email
has proliferated and is one of the most common
uses of the internet.

In 1972, Kahn left BBN and went to work
for ARPA (which was renamed DARPA). He
was designing a network that could be operated
over radio and satellite, and so had a number of
technical problems to solve including lost or cor-
rupted packets, diverse network characteristics,
global addressing, and others. He concluded that
ARPANET’s NCP communication protocol was
too limited for all those reasons and more. So he
started to design a new one, but quickly realized
he needed help from an expert in operating sys-
tems.

So in 1973, Kahn showed up in the SRI
lab at Stanford to talk to Vint Cerf. Cerf had
worked with the SRI team since the beginning of
the ARPANET project. Kahn and Cerf together
worked to build a new Transmission Control
Protocol (TCP), which they unveiled at a meeting
of the International Network Working Group in
September 1973. Their protocol was eventually
split into two cooperating layers and renamed
TCP/IP. The Internet Protocol (IP) layer is used
for addressing while the TCP layer is used for
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packaging and provides the connection to the
application. A more technical discussion will be
given at the end.

TCP/IP was specifically designed to be inde-
pendent of the hardware on which it was ex-
ecuted, thereby abstracting the implementation
details from the applications. It was also intended
to be non-proprietary to allow modification by
users as needed. It was implemented by three
different teams, and all of them were able to
interface correctly and easily with each other.
On November 22, 1977, the first message was
sent across three networks to demonstrate the
feasibility of TCP/IP. Kahn and Cerf did not
patent TCP/IP; they were determined to make it
freely available as soon as possible [14].

Growth

ARPANET was primarily dedicated to mil-
itary purposes. Other groups saw their success
and created their own networks dedicated for their
own needs. None of these were for general pur-
pose use and they were unable to communicate
with each other. Kahn, Cerf and others started
working to make internet connectivity available
to the public, through small and steady (but
disjointed) efforts. An important point came when
David Clark and his MIT research group decided
to make TCP/IP work in personal computers[2].
Then, at UC Berkeley, a team of researchers were
able to incorporate TCP/IP into the Unix kernel.
AT&T was actively distributing the Unix operat-
ing system, and it became the most common OS
for mainframes at the time. That change made the
internet available to a much larger community.
Unix is also the precursor to the Linux operating
system that is now the most common server on
the internet.

Shortly after TCP/IP was integrated into Unix,
in 1979, two graduate students at Duke Uni-
versity, Tom Truscott and Jim Ellis, came up
with a plan to allow messaging between univer-
sities. They enlisted the help of Steve Bellovin at
the University of North Carolina, and invented
USENET, which became free for system ad-
ministrators in 1980. This became very popular,
and was the most common way to communicate
across the nascent internet [15].

With the proliferation of networks and com-
puters, it became impossible for every computer
to maintain an up-to-date lookup table of all the
possible addresses. The internet was re-organized
into regions and in 1984, Domain Name Server
(DNS) system was invented to provide lookup
tables for networks that were under them in
the hierarchy, with a few root servers provid-
ing connection between regions. This simplified
communication by allowing people to use named
addresses instead of numbered addresses, with
routers using DNS to find the correct destination.

In 1985 The National Science Foundation
(NSF) created a network for higher education
called NSFNET that was designed to link uni-
versities together. One of their requirements for a
university to join was that the network would be
available to all qualified users, not just computer
engineers. It was also mandatory to use TCP/IP.
The NSF, DARPA and other federal agencies
worked together to distribute the cost and ensure
that the internet would function smoothly despite
the diversity of uses [2]. They established several
federal task forces to maintain it. The NSFNET
actively encouraged universities to link with local
businesses and interests, but they refused to allow
commercial or private traffic on a national level.

Commercialization

The first commercially available connection
to the internet, called Telenet, was established
in 1975 by BBN. It required dedicated lines and
cost a monthly fee, but, once connected, access
was unlimited. It used the same architecture
as ARPANET. Other commercial internet ser-
vice providers (ISP) such as PSI, UUNET, ANS
CO+RE and more began popping up, but they
were still limited by governmental restrictions.
The first commercial, dial-up, text only ISP, called
The World, became available in 1989 [16].

In 1988 the NSF initiated discussions about
the commercialization of the internet. As more
businesses began taking an interest in the internet,
they also began to participate in the task forces
that maintain and define it. These discussions cul-
minated in 1995 when NSF relinquished control
to private companies [2].
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Figure 7. Douglas Engelbart [18]

The Need for Speed
Although ISPs were starting to proliferate,

and people were becoming familiar with the
internet, it was still a very slow process. To
download a low-quality song took from 10 to 30
minutes depending upon your connection speed.
To download a movie took all day at a good
speed, and 5 days at a low speed [17]. In 1988,
Kleinrock and other UCLA professors submitted
a proposal to congress called “Toward a National
Research Network.” Senator Al Gore, who had
been pushing funding for internet research since
the early 1970’s, used their proposal to write a bill
called “The High Performance Computing and
Communication Act,” aka “the Gore bill.” This
was signed into law in 1991 and provided $600
million for the National Research and Educa-
tion Network and for development of gigabit/sec
computing. That research of course led to the
“Information SuperHighway”.

World Wide Web
At the same time that Kleinrock and Roberts

were inventing the foundations of the internet,
Douglas Engelbart was inventing the foundations
of the World Wide Web. His lab at SRI, called the
Augmentation Research Center, was dedicated to
discovering ways for computers to help people
collaborate with each other. Out of all the labs
funded by ARPA, SRI was the only one that was
eager to join the ARPANET, which is how they
became the second node [9].

Figure 8. The Mother of all Demos [19]

Engelbart created a hypertext system called
oN-Line System that was designed to encourage
collaboration and knowledge sharing. Sometime
between 1962 and 1968 he invented the com-
puter mouse, the hyperlink, the Graphical User
Interface (GUI), and the word processor, and
founded the field of human-computer interaction.
In 1968 he demonstrated all of it to a group of
engineers at an event that has become known as
the “Mother of all demos,”. Many of the engineers
in attendance were impressed, but did not see how
it applied to reality. They were still focused solely
on computation, and did not know what to do with
his ideas. Due to the lack of comprehension he
was unable to get funding to develop them further.
Many of his students went to work at Xerox and
Xerox shared their innovations with Apple. But
those companies were more focused on individual
productivity, and less on collaboration. Apple and
then Microsoft further developed some of his
ideas such as the mouse, word-processor, and
GUI into many of the tools that we are familiar
with today [20].

Independently, Ted Nelson was also devel-
oping a hypertext system, and in 1967, he and
Andreis Van Dam created the Hypertext Editing
System. The next year, Van Dam wrote another
hypertext system, called File Retrieval and Edit-
ing System which was based on Englebart’s NLS,
and which was used as a word processor and
collaborative teaching tool by the Humanities
department at Brown University. But most people
who were familiar with hypertext thought it a
niche application, and believed it would languish
in obscurity.
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Figure 9. Tim Berners-Lee[21]

By the late 1980s, PCs were in many homes
and most businesses. Larger companies had Local
Area Networks and some had access to USENET
or NSFNET. Tim Berners-Lee was a computer
scientist at the CERN particle accelerator in
Switzerland. He realized that scientists were ex-
periencing difficulty collaborating since the infor-
mation was stored in too many different formats
on too many different computers. He designed
a solution based upon the existing technologies
of hypertext and internet, and wrote a proposal
in 1989 for a system that would link all the
information together. His proposal was rejected as
too vague. Despite that, he was eventually granted
time to pursue it. During September and October
of 1990 he created the first versions of Hypertext
Markup Language (HTML), Uniform Resource
Locator (URL), and Hypertext Transfer Protocol
(HTTP). He wrote the first Web page editor and
browser in one app called WorldWideWeb.app
and the first web server (HTTPd). In early 1991,
he and others from inside and outside CERN were
adding pages to the World Wide Web. He realized
that in order for the technology to be adopted
by the general public, it would have to be easily
available. So he and others convinced CERN to
make the code publicly available and free [22].

Internet of Things
Naturally, other fields in computer engineer-

ing were developing at the same time as the inter-
net. Miniaturization led to a variety of wearable
electronics, and the dream of connecting them to
a system with more power was always there. The
first patent for Radio Frequency Identification was

done in 1973. The first non-computer object to
be networked into a computer was a vending
machine at Carnegie-Mellon. The Computer Sci-
ence department wired it into their mainframe,
and wrote an application to determine if drinks
were available and cold. In the early 1990’s,
several researchers started using radio transmis-
sion to link a variety of wearable devices to
their computers. In 1999 the Auto-ID center was
created at MIT for researching how to allow RFID
to access the internet. In 2005, the Interaction
Design Institute Ivrea, in Italy designed a hand-
held micro controller for students to use in their
projects [23]. It’s still a developing field, but more
and more people are using smart watches, smart
homes, and linking it all into their smart phones.

Technical discussion of TCP/IP
TCP/IP defines a layered approach to com-

munication. The lowest, network, layer includes
the physical hardware as well as the drivers for
that hardware. Each computer, cell phone, router,
wireless transmitter, wireless receiver, or other
piece of hardware has its own driver, with detailed
instructions about how that machine should han-
dle data. This level of the communication stack
does not access the actual data, it just transmits
it.

Data at this level is included in an Ethernet
Frame. The first item in the frame is a destination
MAC address which is six bytes long. Next is
the source MAC address. The EtherType field is
two bytes long and can indicate either the size
of the payload, or the protocol to be used at the
next layer. The payload, which is the actual data
transmission, is the next item in the frame, and
can range from 46 bytes to 1500 bytes. Finally a
Frame Check Sequence (FCS) is transmitted. It is
four bytes long and is used to verify that the data
received is correct. The receiver calculates the
expected FCS and compares it to the transmitted
FCS. If they are different, then the data is pre-
sumed to be corrupted, and is re-transmitted [24].

After a data frame has been received and
verified, the Ethernet Frame header is stripped
off, and the payload is passed up the stack to
the next layer. The network layer uses the IP or
Internet Protocol. The IP section is the part that
really makes the internet function. Its primary
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Figure 10. TCP/IP stack [25]

function is to be a selector. It is the component
that determines the destination of a packet, and
forwards it. If the destination is another machine,
then it selects the correct output line, and sends
it onward. If the destination address is the lo-
cal machine, then it removes the IP header and
evaluates it to determine which component of
communication stack should receive the payload.
A machine that only forwards to other machines,
never to applications, is called a router [26]

The next component up the stack is either
TCP (Transport Control Protocol) or UDP (User
Datagram Protocol). TCP is the software com-
ponent that controls the connection information.
When TCP receives a notification from IP, it
determines which application needs that data,
strips off the TCP header, reassembles the packets
in the correct order, and delivers the complete
data to the application.

When an application has a message to send,
TCP first attempts to establish a connection. It
uses a synchronize and acknowledge process or
3-way handshake. First the client TCP requests a
connection and transmits a random number (A).
This is the SYN or synchronize step. The server

accepts the connection by sending back the orig-
inal random number incremented by one (A+1)
and another random number (B). This is the SYN-
ACK step. The client then sends both numbers
incremented by one (A+1, B+1) for the final
acknowledge (ACK) step. Once the connection
is established, The TCP program breaks the data
into packets and sends them one at a time. It then
checks to make sure that all the packets arrived
without error, and repeats any that failed.

The handshake, synchronization, and error
handling take a significant amount of time and
bandwidth, but if data integrity is necessary, it
has to be done. On the other hand, if lost or
corrupted data is not a big deal, such as when
streaming movies and music, then the application
can use UDP instead of TCP. UDP forwards data
packets to the correct application without any
error checking or handshaking.

Conclusion
Once, the internet was science fiction. Now it

is reality. It’s not just about computation anymore;
it is about communication and collaboration, and
it’s in everything. Licklider knew it was possible.
Engelbart tried to make it happen. Kleinrock,
Roberts, Cerf, Berners-Lee and others made it
their life’s work, not just to create the technology,
but also to see that it is used for the good of
humanity.
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Representational State
Transfer for a Modern Web
Matt Pope
Brigham Young University

Abstract—As the web grew, it had need to evolve to support the ever-growing number of users.
The original architecture for the web didn’t support this type of scaling and had room for
improvement in many areas. During the standardization process, representational state transfer
(REST) was derived from constraints found in existing web architectures. REST was used as a
tool to evaluate new proposals and identify areas that needed improvement. Since then, the
ideas from REST have been borrowed by engineers and applied in other domains, such as in the
development of application programming interfaces (APIs). Understanding the critical parts of
REST and its conception can help engineers build networked applications with similar properties
and appropriate constraints.

THE TERM RESTful APIs is used by the
engineering community, though it seems like not
too many people have a coherent idea of what
it means. They might have picked up a part,
here and there, but have a hard time forming
a well-defined concept. To dispel some of these
misconceptions, this article visits the past to the
birth of REST to get a picture on the forces that
helped create it, the principles that it focused
on, and how it helped establish the modern web
architecture.

This paper focuses on the network-based ar-
chitectural aspect of REST rather than on the
complete picture that its inventor, Roy Fielding,
envisioned. Precisely, there are pieces of REST,
such as the role of resources, links, views, and
the concept of hypermedia as the engine of ap-
plication state that will at most be spoken about
at a high-level. Instead, this paper examines the
set of constraints and relationships between parts
of the system that are valuable for network-based
systems and the advantages and disadvantages of
them.

The original dissertation by Roy Fielding [1]
was written in the late 1990s to early 2000 and

includes terminology which may be unfamiliar
or has changed since then. In fact, Fielding’s
commission during standardization of the early
web resulted in a redefinition of a few terms
that were commonly used, like resource. Thus,
even terms used in academic papers or early
web documentation prior to the dissertation may
have different or unexpected meanings. The terms
used in this paper are mostly pulled from the
vocabulary that Fielding himself used, so that a
reader of this article could quickly comprehend
his dissertation if they wanted to read it for
themselves.

The important terms to keep in mind are
included here. A component is “an abstract unit
of software instructions and internal state that
provides a transformation of data via its inter-
face”. An architectural style is “a coordinated
set of architectural constraints that restricts the
roles/features of architectural elements and the al-
lowed relationships among those elements within
any architecture that conforms to that style.”
The architectural elements in a style include
components and connectors, which are “an ab-
stract mechanism that mediates communication,
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coordination, or cooperation among components.”
To summarize, data in a system flows through
connectors to reach components. The constraints
and allowed relationships on the connectors, com-
ponents, and other elements describe a style.

In talking about properties of architectures,
Fielding used words like scalability (the ability
to support large numbers of components or in-
teractions between components) and simplicity
(maintaining a separation of concerns to where
functionality is implemented), whose definitions
haven’t changed and which are fairly common.
Other words like visibility, the ability of a com-
ponent to monitor or mediate the interaction be-
tween two other components, or evolvability, the
“degree to which a component implementation
can be changed without negatively impacting
other components” [1], may be less well-known.

This paper begins by examining the landscape
of network architectures that Fielding and other
engineers would have been exposed to. It dis-
cusses the properties, constraints, and advantages
of each to make clear why they were chosen or
left out of REST. Using this foundation, this paper
shows how Fielding derived REST as a combina-
tion of existing architecture constraints and then
helped push the Internet’s architecture forward
with additional constraints that would allow it to
scale. This path can be enlightening to engineers
who are interested in deriving their own, possibly
novel, architecture from the constraints that are in
their own domains.

A Survey of Existing Network-Based
Architecture Styles

When Fielding started his investigation into
how extensions should be made to HTTP, he
realized it was critical to get to know the existing
field of networking architectures. It is useful to
look at these architectures as the group from
which design lessons and principles may have
been elicited. Additionally, it was these types
of architectures that engineers were using in
the late 90s – architecture’s whose futures were
sometimes touched by Fielding’s work. Some of
these architectures have clear origins and engi-
neers who are credited with their development
or popularization, while other architectures may

have a murky origin, arising from unknown or
multiple sources.

We refer to these architectures by their style
– the set of constraints that restrict the roles
and features of architectural elements and relation
between those elements. This is the same way
that Fielding analyzed the architectures when
understanding the properties they promoted. The
ordering of these styles is arbitrary, but they are
clustered by how close they may be related.

Data-flow and Replication Styles

The pipe and filter style has each component
read in streams of data, optionally transform and
process the data, and then output a stream of data,
typically before it has even finished ingesting
data. One constraint is that each component must
be completely independent of other components;
they cannot share state or control with each other.
This constraint allows for a simple system. The
final output of such a system is a composition of
each component. This style promotes a variety of
traits like reusability (arbitrary components can
be connected together if the data being transmit-
ted is of the same format), extensibility (easy
to add new components), verifiability (easy to
analyze), and concurrency (generally quick to
start outputting data). Downsides include that
each component added to a pipeline increases
latency, it is hard to interact with data mid-way
through the pipeline, and that each component is
limited in its interactions with other components
and its own environment.

The uniform pipe and filter style builds on the
pipe and filter style with an additional constraint
that each component has the same interface. This
constraint allows components to be arranged in
arbitrary orders and simplifies understanding how
some component works. The cost to this style
comes with reduced throughput since data needs
be converted to and from the uniform interface
into whatever internal style is utilized by the
component. Doug McIlroy is credited for having
originally proposed this design while a manager
at Bell Labs in 1972. It was his employees and
co-creators of Unix, Ken Thomson and Dennis
Ritchie, who actually implemented what would
become known as Unix pipelines and limited the
architecture to a linear pipeline [2].
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The cache style is a variant of the replicated
repository style, a style that isn’t included in this
not comprehensive list. The cache style increases
accessibility of data and scalability of services
that it is in front of. A cache can reduce the
latency of requests and enable some level of
protection against failures in the server. They
provide the illusion that clients are interacting
with a single, centralized service. Caches are
typically easy to implement and are generally
only beneficial to a system.

This style can be traced back to Sir Mau-
rice Wilkes, who was a Professor at Cambridge
in 1965, who wrote a paper on cache mem-
ory, though with a different, politically incorrect
name [3]. The actual term cache came about a few
years after thanks to an editor of the IBM Systems
Journal who wanted a more concise term than
”high-speed buffer” which was used by actual
computing systems.

Hierarchical Styles

The client-server style is probably the most
common type of style for networked applications.
A client makes requests to some server, which
responds with a rejection or the content that was
desired. The overarching constraint is separation
of concern: the server component is simplified to
the point where it can scale easier and the client
typically handles the user interface functionality.
Since concerns are handled separately, they can
evolve and be updated separately. This style does
not constrain how application state is separated
between the client and the server.

The client-server style is one of the oldest
styles, dating back to when early computers could
finally multitask and computers began to spread
out. The distance between a component (client)
and the data it wanted to access (on a server)
became bigger, and the number of components
wanting to access that data increased. Most at-
tribute the actual formalization of the client-server
style to engineers working on ARPANET in the
1960s and 1970s [4], [5], without specific names.

The layered-system style is composed of lay-
ers that call operations on lower layers and pro-
vide operations for above layers to call. When
used in conjunction with the client-server archi-
tecture, it forms the layered-client-server style.

The main constraints are that layers reduce cou-
pling by hiding layers from those that aren’t di-
rectly above them. This improves reusability and
evolvability at the cost of additional latency and
overhead. The layered-client-server includes the
ideas of proxy (a shared server for many clients)
and gateway (a forwarding server) intermediary
components.

From these past few styles, several more can
be derived. Their names are intuitive, if a bit
verbose. The client-stateless-server style derives
from the client-server style. It has a single addi-
tional constraint that session state must not be in
the server. That is, each request to the server must
include all the necessary information to satisfy
the request and not depend on any saved state
on the server. This constraint increases visibility,
reliability, and scalability by sacrificing network
throughput.

The client-cache-stateless-server style is de-
rived from the client-stateless-server style and
the cache style by including a cache component.
The advantage to this style is that the cache
allows for faster response times since some inter-
actions between components can be eliminated.
The layered-client-cache-stateless-server style de-
rives from the layered-client-server style and the
client-cache-stateless-server style and contains all
the constraints and components of both, such as
layers and intermediaries.

Mobile Code Styles

Differing from replication, data-flow, and hi-
erarchical styles, mobile code styles use the fact
that data and processing of that data can occur
in different physical locations [6]. Often, inter-
actions between components with a very close
physical location are considered to have low
or zero cost in contrast to interactions between
components that are communicating through a
network over some distance. Examples of this
style include virtual machines which execute code
in a controlled environment (used commonly in
scripting languages) and remote evaluation which
allow clients to send an operation and the data
required by that operation to a server where it is
executed (for example, in rendering).

The most common mobile code style today,
however, is the code-on-demand style and its
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derivatives, where a client can request a server for
code to be executed locally. This allows the client
to initially only include a base set of functionality
and be extended at a later time. This style allows
the server to have improved scalability since it
can offload work to the client. It also allows the
client’s static functionality to be simpler, though
at the cost of a decrease in visibility since code
is now spread across the client and server. One
common use case of this style is in web browsers
with the delivery of JavaScript (or in Fielding’s
time, Java applets). The layered-code-on-demand-
client-cache-stateless-server is a not just a mouth-
ful, it is also the style derived from the code-
on-demand and the layered-client-cache-stateless-
server styles inheriting both its advantages and
disadvantages.

Peer-to-Peer Styles
The last style group included in this overview

are the peer-to-peer styles, which consist of a set
of looser constraints than the client-server style.
In the event-based integration style, a component
broadcasts events which can be listened for by
other components. This reduces coupling between
components since components register through
the system and the system is the one invoking
the registered components. Such a design allows
for extensibility and code reuse, though at the
cost of poor understandability (it is hard to know
what will happen when an event is broadcast)
and poor failure recovery (what happens when
a partial failure occurs). The peer-to-peer style
was popularized by Napster in the late 1990s, but
one of the first implementations was USENET
in 1979, and the idea certainly dates back much
farther than that.

Additional styles in this group exist like C2,
which combines event-based integration with a
layered-client-server style, and the distributed
object style, which uses a set of components
interacting together and a well-defined interface
for operations that can be invoked on objects in
the system. The latter was used to derive the
brokered distributed objects style, which is often
considered the very first version of the popular
service oriented architecture (SOA). These styles
in the peer-to-peer style group tend to suffer
from common disadvantages, namely those of
reliability, due to their distributed nature.

Figure 1. Diagram of the early web architecture from
1990 describing how a variety of clients read and
manipulate information on a server through a set of
common standards [7] .

Early Web Design Principles
The web is the shared information space of

both humans and computers [7]. This overarching
goal that Tim Berners-Lee envisioned created
many of the familiar properties of the web that
we still see today. For some time, the audience of
the web was primarily university and government
labs. The information on that web was gener-
ally research data, notes, and contact information
spread across lots of types of computers. The web
needed to grow to support more than just this au-
dience and these types of data; it needed to have
a consistent interface to any type of structured
data that was able to run on all platforms. An
architecture that could grow uninhibited.

The web’s architecture [7] was proposed in
1989 by Tim Berners-Lee while he was at CERN
– a European research organization. It (Figure
1) described the existence of flexible specifica-
tions to ensure interoperability, uniform resource
identifiers to know where data existed, HTTP to
know how to retrieve the data, and HTML to
richly display and interconnect data. The Internet
Engineering Task Force and World Wide Web
Consortium began to coordinate the development
of early requests for comments (RFCs). These
documents would describe how the initial speci-
fications and implementations could be extended.
For example, it was RFC 2068 [8] that would first
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describe HTTP/1.1 in 1997. Later modifications
would update and replace the HTTP/1.1 speci-
fications, like RFC 2616 [9] in 1999 and RFCs
7230 to 7235 in 2014.

By the time that HTTP/1.0 was released in
1996, there had been close to 2,000 RFCs submit-
ted. It had become clear in the early nineties that
the initial network characteristics of early HTTP
were insufficient to handle the rapidly growing
web and would need new ideas to tackle issues
that would only worsen over time. Evaluating
the proposals (and ideas before they became
proposals) to determine how well they aligned
with the web’s principles was a challenge – one
that Roy Fielding tackled with his work from
1996 to 1999, eventually culminating in his 2000
PhD dissertation titled ”Architectural Styles and
the Design of network-based Software Architec-
tures” [1] at UC Irvine.

Early web architecture was based on prin-
ciples such as separation of concerns, simplic-
ity, and generality. Fielding hypothesized that
the early web architecture had several implicit
constraints that explained its design rationale.
In order to extend the web, you simply could
identify properties that are desirable, select the ar-
chitectural styles that induce those properties, and
then combine them to the web’s existing style.
This formed the basis for his second hypothesis:
that the properties of a modern web architecture
could be derived by joining constraints to the
existing web architecture style.

His final hypothesis spoke to how he could
evaluate proposals to modify the web architecture.
Simply compare proposed extensions against con-
straints within the style. A conflict would indicate
that some design principle behind the web was
violated. That conflict can be handled by rejecting
the proposal (to be developed outside, but parallel
to the web) or amending it to better align with
the accepted design principles. However, if this
conflict was necessary for the modern web, a
specific indicator could be used.

Born from the NULL style
Fielding’s plan was to “use an architectural

style to define and improve the design rational
behind the Web’s architecture, to use that style as
the acid test for proving proposed extensions prior

to their deployment”. To get to that architectural
style though, rationale had to be provided for each
of the constraints. It was while working on the
standardization process for HTTP that he distilled
this style [10].

Instead of starting with some existing archi-
tectural design and adding constraints, REST was
created from the nothing, the null style, and
adding familiar components until it satisfied the
needs of an intended system. Fielding claimed
that this type of process favored creativity and
unboundedness over system restraint and under-
standing the context of the system. The initial
null style is equivalent to a system without dis-
tinguished boundaries between components.

Catching up to existing architectures
The client-server architectural style was added

to the null style. The valuable constraints in this
style were driven by the separation of concern
principle – separate the user interface concerns
from the data storage concerns, allowing for the
user interface to be portable and the data stor-
age to be internet-scale. This separation allowed
for independent evolution of web browsers and
servers, which is a critical part of how new web
technologies have been brought to market.

Add the stateless constraint, to form the client-
stateless-server style. Stateless communication re-
quires that requests contain all the information
necessary to understand the request. This style
promoted the properties of visibility, reliability,
and scalability, which are critical parts of the
modern web. The full nature of a HTTP request
can be determined by the request itself, recovery
from partial failures is easier, and scalability is
improved since the server doesn’t have to store
state between requests. Even implementation is
easier because server resources don’t need to be
managed across requests.

Then, add cache constraints, to form the
client-cache-stateless-server style. The cache con-
straints require that data within a response is
labeled as cacheable or non-cacheable. If its
cacheable, then the client can reuse that response
for future equivalent requests. The cache im-
proves scalability, efficiency, and performance. It
is possible that a cache could serve stale data, a
trade-off that would decrease reliability, but it is
often considered necessary.
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The Modern Web
At this point, the client-cache-stateless-server

style contains the set of constraints seen in the
early Web architecture, in Figure 1. The modern
web needed extensions to add additional con-
straints for new features that were outside the
early design.

The most central theme of these additional
constraints is the emphasis on a uniform interface
between components. Instead of each component
specifying how you can interact with it, they
each follow a general contract, which ensures
that the overall system architecture is simplified
and visibility of interactions is improved. There
are four individual constraints that REST defines
for interfaces, which work together to create a
uniform interface. They are 1) identification of
resources, 2) manipulation of resources through
representations, 3) self-descriptive messages, and
4) hypermedia as the engine of application state.

As previously mentioned, there are some
downsides when using a uniform interface,
though REST considers these acceptable. Effi-
ciency is lost because now applications need to
translate data to and from a standardized form,
rather than whatever internal format might be
most useful. Small-grain hypermedia data transfer
suffers as well, for similar reasons. In the early
web, this wasn’t a large problem since it was
not considered the common case but has recently
grown in time. (A problem that helped encourage
the development of HTTP/2 in 2015 and HTTP/3
in 2020.)

Fielding considered that other constraints are
needed to improve application behavior. For ex-
ample, the layered system constraints are also
included, to fix component behavior so that each
component can only see the layer they are inter-
acting with. The constraints help improve system
scalability [11], reduce system complexity and
promote independence, at the cost of some over-
head and latency [12]. Layers are useful when
designing networked application because they
can encapsulate legacy services, protect against
legacy clients, and allow for shared caching and
load balancing with intermediaries [13], [14].

With these constraints as the basis of the mod-
ern web architecture, Fielding proposed one fur-
ther optional constraint set: those from code-on-
demand style. This style was considered optional

Figure 2. The REST derivation as described by Roy
Fielding, is made up of styles with constraints that
complement each other [1].

because of how it can reduce visibility since
client functionality can be extended by executing
code. He considered it necessary though, since
it allowed clients to become drastically more
simple (features are no longer required to be pre-
implemented) and allows the development of an
architecture that supports some desired behavior
as the general case, but an understanding that it
may be disabled within some contexts (typically
referred to as graceful degradation). Since this set
of constraints was optional, it is simple to under-
stand that architectures that chose to not include
them don’t suffer from their disadvantages.

It is satisfying to see that the modern web
architecture, that is the architecture style that
REST proposes, shown in Figure 2, is concretely
founded upon existing architectures that histori-
cally worked well to fit the properties and goals
of the web. The additional constraints that REST
included are critical to scale the web up to what
it has transformed into. Uniform interfaces and a
layered system mean that new components scale,
are visible, and work well together. While it is
certain that the modern web architecture may
evolve further, these constraints have helped push
it in a positive cohesive direction rather than
fragment it further.

Influence on Early Specifications
REST’s influence can be seen in the design

and development of the architecture of the mod-
ern web as early as 1994. Fielding’s dissertation
speaks about the experience he had and lessons
he learned applying REST as he was working
on standards for HTTP and Uniform Resource
Identifiers (URIs) and as this technology was
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deployed in software packages like libwww-perl
and the Apache HTTP Server Project.

Prior to REST, the web’s architecture was
described only in a couple of places and was
severely out of date since it was evolving so
quickly. These documents were limited to unor-
ganized notes [15], a few scholarly papers that in-
troduced the web [16], [17], some draft proposals
for new features, and a mailing list that was used
as a discussion group by interested parties. The
task to standardize the web interface protocols
was assigned to the Internet Engineering Task-
force (IETF) and supported by the World Wide
Web Consortium (W3C) which was formed by
Berners-Lee.

Roy Fielding was tasked to write the specifica-
tion for the Relative URL, and cowrite HTTP/1.0.
Eventually he became the primary author of the
HTTP/1.1 specification and URL to URI revision
specifications. It was during the development of
these specifications that first concepts of REST
were developed, though initially they were called
the HTTP object model and were used as a
way for communicating web concepts between
engineers. It would evolve over the next few years
and finally gain the name Representational State
Transfer. Such a name helped describe how a web
application, as a distributed hypermedia system,
should behave. A network of pages which can
be traversed by selecting links resulting in a new
page being shown to a user: effectively a state
machine.

It is not uncommon to wonder what precisely
was influenced by REST after hearing so much
about it. The Uniform Resource Identifier (URI)
is likely the most well-known of these things. The
concept that URIs now captured had been known
by many names, including www addresses, uni-
versal document identifiers, and most commonly
universal resource locators (URL).

That original definition of URIs were simply
document identifiers, usually meaning the loca-
tion of the document on some network. This
proved to be inadequate as services were intro-
duced into the web. A user may be interested in
a service or the result from some invocation of
the service rather than a document. Additionally,
the old definition suggested that the identifier was
naming the data that was transferred and that

every time this data would change it might receive
a new identifier. There also arose the need to
provide addresses for documents that did not exist
(but might in the future) and provide addresses in
a way that only applied to naming some resource,
rather than locating it.

REST redefined the term resource for the new
URI standard, in RFC 2396, to be whatever an
author intends to identify rather than whatever
the author was identifying when the URI was
created. This means that a reference may remain
static even if the content that the reference returns
changes over time. This change has impacted
almost all systems that have and use dynamic
content. This new definition has also clarified
that the content that is transferred is also not
the resource, but rather a representation of that
resource.

The HTTP specification was also influenced
by REST. When REST was used to identify
problematic areas in HTTP, it found several ar-
eas for improvement, such as planning for the
deployment of new protocol versions, separat-
ing message parsing from HTTP semantics and
the transport layer, improving cache control, and
ensuring that all parts of the protocol are self-
descriptive. From these problem areas, arose ele-
gant solutions.

The HTTP protocol now can permit clients
and servers to do some (basic) protocol negotia-
tion and decide which features to use and which
features the client supports. Extensible protocol
elements now permit more specific or even brand-
new error codes, which, if the semantics were un-
known by a client, could be interpreted by clients
as an error of the same class (i.e. a status code 435
could be treated as status code 400). HTTP/1.0
and HTTP/1.1 included the target URL’s host
information in a header field, which allows for
multiple domains to live on the same server.
HTTP/1.1 includes several response headers for
cache control, content age, and an etag.

Not only did REST identify improvements
and help justify why they were necessary, but
it also helped reject critical proposals. One such
proposal was a new set of methods (MGET,
MHEAD, etc.) for batching multiple requests
within a single message. It violated several con-
straints: it required that clients know all of the
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requests to be included before it could write to the
network due to the content-length header field,
it required that intermediaries (such as caches
or proxies) be able to read all of these requests
to determine which they could resolve locally,
and complicated how access-control would work
when a subset of these requests would need to be
denied. Another proposal that was rejected was
write-back caching: caching of PUT requests to
satisfy a later GET response.

Despite the impact of REST on the web ar-
chitecture and specifically HTTP, there are some
mismatches that existed after Fielding’s work on
HTTP/1.0 and HTTP/1.1. The largest of these
is the use of cookies, which allowed data to be
passed without sufficient semantics and allow a
user to be tracked as they browse between sites.
There is also some trouble when differentiat-
ing between authoritative responses, from a real
data source, and non-authoritative responses, like
those from a cache. It is perhaps best to view
REST as a well constructed guideline, rather than
an absolute rule, for knowing how well features
follow the goals of the web. Just because an idea
doesn’t follow REST does not mean that it is a
terrible one.

A Word on REST and APIs
The word REST has come to mean so much

more since 2000. In 2008, Fielding wrote “I am
getting frustrated by the number of people calling
any HTTP-based interface a REST API. Today’s
example is [..] That is RPC. It screams RPC.
There is so much coupling on display that it
should be given an X rating.” [18]. Engineers
didn’t suddenly stop using the term after his
proclamation though - in fact, it seems quite the
opposite. Often you’ll still hear engineers talking
about which HTTP verb to be using with some
request from a client to a server, despite this not
even being mentioned tangentially in Fielding’s
dissertation. It is clear that the term REST was
misappropriated - and it is helpful to separate the
two conceptually.

Conclusion
REST was born from massive pressure driving

new innovation to the web. As part of the stan-
dardization process, Roy Fielding was called on

to help write specifications, working with many
other smart engineers, each on their own spec-
ifications, that together would form the modern
web. REST was designed as a framework to
design and evaluate proposed improvements to
key communication protocols. This was done by
using a style (REST) as a type of acid test to
prove proposals before they were deployed. The
codification of the styles that induced desirable
properties allowed the web to transition into what
was, in their time, known as the “modern web”.
REST was a critical piece in a vulnerable junc-
ture in the web’s development. The principles of
REST still hold up to this day–and are so solid
that they have been borrowed by engineers to
describe things outside of the original domain that
Fielding created it for.
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A Short History of Encryption
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Abstract—Encryption forms the backbone for secure communication in the modern day. In
ancient and modern history, encryption techniques were used to obscure trade secrets, and
assist in sharing military communication. Today, we use encryption every day as we browse the
web, communicate over secure messaging platforms, and access online banking and shopping.
In this paper, we investigate the evolution of encryption from Ancient Mesopotamia to the
public-key cryptosystems of the modern day. We explore the uses of modern encryption in cloud
computing and secure messaging, and look to the future implications of the democratization of
cryptography.

SINCE THE DAWN OF HUMANITY, there has
been a need for people to conceal information.
There have been many different methods that
people have used to protect information from
being seen or understood by those whom the
information was not meant for. In ancient times,
this was primarily used for secret communication
during war times between leaders. Even before
that, one of the earliest forms of concealing in-
formation was to protect a trade secret. Today, we
use newer methods to protect private health data,
messages, and financial information when we use
the internet. While the uses for concealing data
have varied throughout history, many important
principles remain the same. To understand these
principles we need to understand how information
is concealed, how these methods have evolved
over time, and finally understand its role in our
lives today and how it may change tomorrow.

Cryptography Basics
Cryptography is the study of secret communi-

cations, especially when communication may be
in the presence of adversaries [1]. The primary
goal of cryptography is privacy. If two individuals
share information privately, an adversary would
not be able to understand what was communi-
cated. At first, these communications were typ-
ically written words, which had been disguised

so that adversaries could not understand what
the messages said. This is called encryption. En-
cryption is “the process of converting information
into a code, especially to prevent unauthorized
access” [2]. Rivest explains a standard encryption
algorithms uses a secret-key ecosystem which
contains the following:

• A message space M : the set of strings that
make up a message over an alphabet

• A ciphertext space C: the set of strings that
make up the ciphertexts over an alphabet

• A key space K: the set of strings that make
up the keys over an alphabet

• An encryption algorithm E that maps K ∗M
to C

• A decryption algorithm D that maps K ∗C to
M

The algorithms E and D must satisfy the
property that D(k, E(k,m)) = m for every k ∈ K,
and m ∈M [1]. This means that for any key K,
and message M, the encryption with E will be the
ciphertext C. The algorithm D must then decrypt
C using key K into M. For this system to work,
the key K must be transmitted to each party out
of band, meaning the key must be agreed upon by
both parties privately, and separately from when
they share ciphertexts. This key must be kept
secret.
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In this paper we will use several pseudonyms
for individuals that may be communicating with
each other to help illustrate how these encryption
techniques work. Alice and Bob are individuals
that are attempting to share information, while
Eve is an eavesdropper on their communications.
As long as Alice and Bob use a secure algorithm
for E, and their key is kept secret from Eve, then
this method provides confidentiality, the primary
goal of encryption. However, today, encryption is
used for other purposes as well, specifically au-
thentication, integrity, and non-repudiation. Au-
thentication helps Alice determine that she is
communicating with Bob and not someone else
pretending to be Bob. Integrity, allows Bob to
detect if the message that was sent from Alice has
been modified by someone who is not authorized.
Non-repudiation, prevents the ability for Alice to
later deny that the message was written by her.
These properties that may be provided by encryp-
tion are more recent innovations in cryptography.
Before we can understand the implications of
these encryption purposes we must understand
how cryptography has evolved over the last 2
millennia.

Before the Information Age
Today, encryption is primarily understood to

be the protecting of digital information from
attackers or online adversaries. However, en-
cryption began far before the invention of the
computer or even the discovery of electricity.
In this section we will investigate the roots of
cryptography from ancient Mesopotamia to their
use in World War I and World War II.

Ancient History

Scytale The first documented example of cryp-
tography is in Ancient Mesopotamia, near the
Tigris River. A cuneiform tablet was discovered,
dating back to 1500 BC which contained an en-
crypted recipe for a pottery glaze [3]. The author
used a simple substitution process, substituting
symbols for other symbols, making the writing
seem random. Those trained in the method of
encryption were able to decipher it allowing
craftsmen to share the recipe with allies without
having to worry about adversaries learning their
trade secret.

Figure 1. A representation of an Ancient Greek Scy-
tale [5]

This encryption method is weak, and slow,
especially if there is a long list of paired symbols
that must be memorized. For this application the
solution was probably enough, however when it
came to more complicated messages, this algo-
rithm had significant weaknesses.

Nearly 800 years later in ancient Greece,
military leaders recorded the use of a device
called a scytale [4]. This device was a simple rod
of a specific diameter. Alice would wind a strip
of parchment around the rod going from left to
right, and then write a message from left to right
across the strip of paper as seen in figure 1. When
the parchment is removed it would look like just
a series of random letters. When Bob receives the
parchment he would wind the parchment around
his rod of the same diameter and would be able to
decrypt the message. If Eve was able to intercept
the message she would need a rod of the same
diameter to be able to decipher the message. For
this cipher the “key” used would be the diameter
of the rod, without this diameter the message
would not be able to be decoded.

This process had significant advantages to
the method of encryption used in Ancient
Mesopotamia. It required no memorization, and
was fast to both encrypt and decrypt. However it
would have been fairly simple for adversaries to
decrypt the messages if one knew the process.
They could simply use various sizes of rods,
and use different sizes until the letters on the
parchments aligned into sentences and words that
were sensible.

Caesar Cipher A stronger method of encryption
is found several centuries later in ancient Rome
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during the reign of Julius Caesar, named the
Caesar Cipher [6]. This cipher is one of the most
well known of the basic ciphers. The cipher works
by shifting each symbol in the message by a
given number to mask the real symbols used.
Just like the diameter of the Scytale being the
secret “key”, the number of the shift would be
the secret “key”. For example, if the number
to shift is 3, the standard use by Julius Caesar,
an A would become a D when encrypting. The
system would wrap around the alphabet meaning
a Z would become a B when encrypted. This
process is simply reversed when decrypting, B
would become a Z, and D would become an A.

At it’s time this method was believed to be
a reasonably strong method for encrypting mes-
sages. Caesar used it to send messages throughout
his military. Religious leaders used it to encrypt
the names of God in religious texts [7]. Even
today this cipher has been found to be used by
some terrorist organizations [8]. The widespread
use of this cipher shows it’s impact and success in
protecting private messages. However, 700 years
after it’s first reported usage, a method for break-
ing this cipher was developed by Arabic cryptog-
raphers, contemporaries of Muhammad ibn Musa
al-Khwarizmi, the father of algebra. The first
important breakthrough at this time was by Al-
Khalil ibn Ahmad al-Farahidi, born in 718 CE.
Al-Farahidi was made the first dictionary of the
Arabic language. Following this work, he wrote
one of the first books focused on cryptography
and cryptanalysis. In this work, he listed permu-
tations of all possible Arabic word [9]. Following
on this work Abu Yusuf Ya’qub ibn ’Ishaq as-
Sabbah al-Kindi developed a method for breaking
ciphers by analyzing the frequency of each letters
occurrence in plaintext. This method is known as
frequency analysis [10].

To break the Caesar cipher using frequency
analysis one would first need to be familiar with
the language of the plaintext message. One could
analyze any plaintext message in that language of
a reasonable length by counting the occurrences
of each letter. This process is repeated in the
ciphertext. Then, by comparing the two distribu-
tions, a pairing could be created, pairing letters
of similar distributions between the plaintext and
the ciphertext. Substituting each paired letter in

Figure 2. An Alberti Cipher Disk. [11]

the plaintext distribution for the accompanying
letter in the ciphertext should yield the plaintext
message. This method for breaking the Caesar
cipher is also able to break any encryption al-
gorithm that relies on simple substitution. Future
cipher designs were primarily motivated by this
development.

Early Modern History

Alberti Cipher With the advent of frequency
analysis, in 1467 Leon Battista Alberti sought
to find a cipher that would be immune to these
attacks. In the process he developed the first
polyalphabetic substitution cipher. A polyalpha-
betic substitution cipher is a cipher that switches
between multiple alphabets when encrypting a
message. The cipher he invented is known today
as the Alberti Cipher.

The Alberti Cipher uses an Alberti Cipher
Disk. This device consists of two concentric disks
which can be rotated with respect to each other,
seen in figure 2. Each disk was divided into 24
equal sized sections with each section containing
a unique symbol. On the other ring were the 20
capital latin letters minus the letters H, K, or Y
and the numbers one through four. On the inner
disk were the lowercase latin letters with the &
symbol included in a random order.
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Alberti outlined multiple ways to use this ci-
pher. For our purposes we will outline the method
primarily used. For this method both Alice and
Bob would need to have an Alberti Cipher Disk
and would have to have agreed beforehand to use
one of the lowercase letters as their chosen index.
When Alice is encrypting a message, she would
first choose a random capital letter and position
their agreed upon index beneath that capital letter.
She would then write that capital letter in the
cipher text followed by the symbol in the inner
ring that aligns with the location of the first letter
of the plaintext on the outer ring. Alice would
then move to the next characters in the plain-text,
writing the corresponding cipher text. This would
be repeated for a few words before Alice would
then shift the cipher by rotating the inner ring
some number of spaces then writing the capital
letter that is above the index in the cipher text and
then repeating the process until the message is
completely encoded. To decode the message Bob
would start at the beginning on the ciphertext and
put the index of his disk on the first letter in the
message. Then writing the corresponding outer
symbol for each letter in the ciphertext, switching
the location of the index everytime a capital letter
or number appears in the ciphertext.

At its time, this method seemed to be immune
to frequency analysis attacks, however, future
worked proved that this cipher still suffered from
vulnerabilities. The first problem is that the cipher
relies on the agreed upon method for shifting the
alphabet used for encrypting to be secret. If Eve
is able to intercept a message sent from Alice and
knows that the capital letters represent a shift of
the index to that letter, she just needs to figure
out what index Alice used. Since there are only
24 options for the index value she could simply
iterate through those 24 options until the first
few words are successfully decoded. Every time
a new capital letter appears Eve could just shift
the index she found to match that capital. This is
known as a brute force attack. Since there are only
24 options, this attack is fairly easy to implement.
Despite it’s weaknesses this development helped
pave the way for the modern encryption methods
of today.

Vigenere Cipher One hundred years later, in
1553, Giovan Battista Bellaso created a new

Figure 3. A Vigenere Square, or Tabula recta. [14]

polyalphabetic cipher that would improve on the
Alberti Cipher and even be termed unbreakable
for almost 300 years [12]. Despite Bellaso be-
ing the inventor, in the 1800’s the cipher was
misattributed to Blaise de Vigenere and was thus
named the Vigenere Cipher [13]. Bellaso built this
cipher on prior work from Alberti, as well as the
work of Johannes Trithemius, who invented the
tabula recta. The tabula recta was a letter square
as seen in figure 3 which can be understood to be
a table of 26 different Caesar ciphers. The first
row represents the plaintext alphabet, and each
subsequent row is the row previous being shifted
by one letter. Bellaso recognized that he could use
this table to shift each letter by a varying amount
by using a secret key.

If Alice used the Vigenere Cipher to encrypt a
message for Bob they would first need to decide
on a secret key, typically a word or phrase. Say,
they decide on the key being “PASSWORD.”
Now Alice needs to encrypt the message “We
attack at dawn.” Then Alice would align the plain-
text with the key as seen below. Then using the
tabula recta Alice would look down the column
that starts with “W” and select the letter that
cooresponds with the row that starts with “P”,
the first letter in the key and would find the letter
“L.” She would then repeat that process for each
letter in the message, the resulting string would
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be the cipher text. Bob would then “undo” this
by following a similar method, except instead of
finding the correct letter in the table, instead Bob
would start with the row that starts with the first
letter of the password, looking at each column
until he see’s the first letter in the ciphertext. The
column that the cipher text letter is in would be
the plaintext letter.

WEATTACKATDAWN

PASSWORDPASSWO

LESLPOTNPTV SSB

Mathematically, each of these letters can be
assigned to the numbers 0-25, where A is 0, B is
1, etc. Alice would have a message M , a string
of letters Mi , and some key K, a string of letters
Ki. The resulting cipher text C would be:

Ci = (Mi +Ki)mod26

The decryption d would then be,

Mi = (Ci −Ki + 26)mod26

This encryption algorithm improved on Al-
berti’s, significantly increasing the complexity of
the encryption and increasing the difficulty to
crack. Despite claims that it was unbreakeable, in
1863 Friedrich Kasiski published an attack on the
Vigenere cipher. The key weakness in the cipher
was identified to be the length of the key that
was used. While under most circumstances it was
impossible to use frequency analysis to crack the
cipher, Kasiski found that if there were repeated
strings in the message, there would be times that
the repeated words would be encrypted to the
same thing, if the words aligned with the length
of the password. Once an attacker can identify
the length of the key used, they can then break
the cipher text into blocks the size of the key
used. In each block the nth letters will have been
encrypted using the same alphabet because they
were encrypted with the same letter in the key.
By doing frequency analysis on the nth letters
combined. If the message is long enough for
frequency analysis this process will reveal the key
that was used, thus breaking the cipher.

Figure 4. A toy replica of a Jefferson Wheel.[15]

Modern History
Now we turn our attention to the Industrial

Era. With the rise of major global powers, came
the need for stronger encryption, especially after
the attack on the Vigenere cipher was published.
The next important invention occurred before
the Vigenere was known to be broken, by the
American President Thomas Jefferson.

Jefferson Wheel The Jefferson Disk, invented
in 1795, is a mechanical device that used a set
of disks, each of which had 26 letters on the
outside as seen in figure 4. Each disk had the
letter scrambled in a random way so that each
disk is different. When constructing a message
the disks would be placed in an order that both
parties agree upon. Then a sender could rotate
each disk to spell out their message, and then
choose any other row of the disk to be the cipher
text. This would be repeated until the message
is completely encrypted. To decrypt the receiver
would put the disks in the correct order and spell
out the ciphertext by rotating the disks. Then
by looking at every row, they could easily find
the row that is readable and that would be the
plaintext.

The key in this algorithm is the order of the
disks. Without any knowledge of the plaintext
or the key, the only way to crack the message
is by trying out every possible order of disks.
Jefferson’s original design had 36 disks meaning
there would be 36! ≈ 2138 possible orderings, an
unreasonable amount of work even for modern
day computers. On the other hand, if an attacker
knew some information about the message such
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as the first block of the plaintext, they could
use this to determine the offsets used between
the plaintext and the ciphertext to find the cor-
rect ordering of the disks. A similar method
for attacking the Jefferson wheel enabled Polish
and British cryptographers to attack one of the
most infamous encryption devices in history, the
German Enigma.

Enigma Machine The German Enigma machine,
was a device used by the German military
throughout World War 2. During WWII, the
Germans adopted a military fighting tactic they
called Blitzkrieg, which emphasized a rapid, over-
whelming force oftentimes in surprise. In order to
achieve this, the German military relied on radio
signals to instantly communicate with military
leaders but they needed a way to keep the mes-
sages from being understood by their enemies.
To do this they encrypted their messages using
these Enigma machines. The machine was a rotor
machine that could scramble the 26 letters of
the alphabet. When encrypting a message the
sender would type the message on the keyboard
and when each key is pressed one of 26 lights
would be pressed which would correspond to
the ciphertext. The encrypted message could then
be sent over radio waves without fear that the
message would be decrypted.

The machine also used a polyalphabetic ci-
pher and builds upon the Vigenere Cipher and
Jefferson’s wheel. Instead of using a specific text
key like in Vigenere the key of the system was on
how each machine was configured. Each machine
had specific rotor settings and wiring settings.
These settings determined how each rotor would
rotate with each key press of the keyboard. Like
the Jefferson wheel, the possible permutations
for the settings made a brute force attack nearly
impossible.

In September of 1939 in the middle of WWII,
up and coming British mathematician Alan Tur-
ing joined cryptographers at Bletchley Park and
began work on breaking the Enigma. As men-
tioned earlier, because the vast number of possi-
ble permutations of the settings for the Enigma
prevented a brute force attack, they had to look
for other methods of attack. In the process they
found that messages sent that were a continuation

of a previous message always started with the
same plaintext. Using this, researchers were able
to store every permutation they had seen of the
ciphertext, and they could then systematically
determine the corresponding machine configura-
tions. This process still required intense compu-
tational effort, and to do this Turing invented the
Bombe. This device would replicate the action
of many enigma machines wired together and
could reduce the space of possible permutations.
Turing’s work was successful, and the British
were able to crack the Enigma. By many accounts
their work led to the shortening of the war and a
British victory [16].

One Time Pad After finishing work at Bletchley
Park, Turing traveled to America to assist the
American efforts in breaking the Ciphers used by
the German Navy in the North Atlantic. While
there he came into contact with Claude Shannon
at Bell Labs. Shortly after the war Shannon
worked on developing methods for proving the
security of encryption techniques. In the process
he proved the security of one-time pads, an im-
portant encryption technique invented in 1882 by
Frank Miller [17].

The one time pad is very similar to the Vi-
genere cipher, except for a few major differences.
In a one time pad, the key must be at least as long
as the message that is to be encrypted. When
a sender wants to sent an encrpyted message
they would do modular addition of the plaintext
message with the key. As long as the key is
completely random, not reused, and the length of
the plaintext it is impossible to crack. An example
can prove this case. Let’s say Alice needs to
send the message ”ONETIMEPAD” to Bob. They
would first need to have agreed to a secret key that
is at least 10 characters long. If they randomly
created the key ”TBFRGFARFM” Alice could
then encrypt the plaintext as shown below.

ONETIMEPAD

TBFRGFARFM

IPKLPSFHGO

If Eve was able to intercept the ciphertext she
could attempt to iterate through possible keys but
there would be a significant number of viable
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options. For example, she could find the key
“POYYAEAAZX” would decrypt the message
to “SALMONEGGS” or “GREENFLUID.” Each
of these are equally possible and therefore it
would be impossible for Eve to learn the correct
plaintext [18]. Shannon realized this fact and
published his proof showing how the one time
pad is perfectly secure [19]. This proof became a
critical bedrock for modern encryption. Shannon
helped illustrate the connection between mathe-
matics and cryptography and described the two
basic types of cryptography. He explains one form
of cryptography is that like the one time pad, a
system meant to protect against adversaries with
infinite resources, and practical secrecy, being
systems meant to protect against adversaries with
finite resources [19]. Shannon’s work served as a
major influence for future cryptographic advance-
ments in the Information Age.

The Information Age
We will now shift our attention to the two

primary breakthroughs in the Information Age
that followed the groundbreaking work of Shan-
non. With the rise of computers and electronic
communication, came the need for a standard
method of protecting digital communications. The
primary focus since Shannon’s proof has been on
practical security systems.

Symmetric Encryption

In the 1970’s the National Bureau of Stan-
dards invited researchers to developed a technique
for securing communications for large financial
organizations. In response to this request IBM
presented their proposed solution based on a
design by Horst Feistel.

Feistel Networks As a researcher at IBM, Feis-
tel designed the Feistel Network . The Feistel
network is a structure that can be used in the
implementation of block ciphers. A block cipher
is simply a cipher that uses a key and operates on
a fixed size of data called a block. Typically block
ciphers use a function called a round function
that takes a key and some data as an input and
returns an output the same size as the input data.
This round function is repeated some number of
times as defined by the specific algorithm. In most

Figure 5. The flow diagram for encryption and de-
cryption for a Feistel Network. [21]

circumstances a master key of fixed size is shared
between parties and the encryption algorithm uses
a key schedule to derive n number of subkeys
where n is equal to the number of rounds that
the round function is repeated. Feistel Networks
follow this basic operation, seen in Figure 5 .
First a block is divided into two blocks of equal
size, L0 and R0. One block, R0 is used as an
input to a round function with a subkey derived
from the master key. The resulting output, is
XORed with the block L0 to get L1. In the
next round L1 becomes the input to the round
function and it’s result is XORed with R0 to get
R1. This process is then repeated n times [20].
One important characteristic of Feistel networks
is that the method for decryption is the exact
same except for the process for calculating the
subkeys are reversed. Because the round function
is not reversed, the function does not need to be
invertible.

The proposed solution by IBM was accepted
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by the National Bureau of Statistics and named
the Data Encryption Standard (DES) with a key
size of 56-bits [22]. This standard was used until
it was superseded by a new encryption standard,
the Advanced Encryption Standard in 2001.

Substitution-Permutation Networks - Rijndael -
AES In the late 1990’s researchers began to be
concerned with the small key size used in DES
[23]. In 1997, the National Institute of Standards
and Technology, the renamed National Bureau of
Standards requested a new standard for data en-
cryption, this time holding a competition among
interested researchers. In all, 15 algorithms were
proposed with the eventual winner being the
Rijndael algorithm, named for the two authors
Vincent Rijmen, and Joan Daemon, renamed the
Advanced Encryption Standard (AES).

AES uses a different type of block cipher than
DES, a substitution-permutation network (SPN).
SPNs like Feistel networks apply some defined
operations over a series of rounds. However, in-
stead of using a function like the round functions
in Feistel Networks, SPNs use a combination
of substitution boxes (S-Box) and permutation
boxes (P-Box) as seen in Figure 6. The S-Boxes
perform a substitution of the bytes in the input
and produce a different output. This must be one
to one so that the S-Box is invertible. In the P-
Box the input is simply scrambled in a specific
order and then some operation, usually an XOR,
is performed with a subkey. This is then repeated
over a given of n rounds. Unlike Feistel Networks
each of the S-Boxes and P-Boxes must be invert-
ible. To decrypt the ciphertext, the algorithm is
reversed using the inverse S-Boxes and P-Boxes
[24].

The accepted version of AES originally used
a key size of 128. Since then, with advancing
computing power, the key size has been increased
to 256 bit key sizes.

Public-Key Cryptography

One of the most significant advancements in
the world of crpytography was the invention of
asymmetric encryption or Public-key cryptogra-
phy. In each cryptopgrphic algorithm discussed
today, there is one requirement that is consistent,
the need for communicating parties to agree on a

Figure 6. The flow diagram for a Substitution-
Permutation network. [25]

secret key and be able to share this key securely
with each other. This problem had plagued cryp-
tographic methods for centuries. In the 1970’s the
problem was especially on the mind of Whitfield
Diffie, an American Computer Scientist. While
trying to think of ways to improve key distri-
bution he imagined a groundbreaking scenario
in which encryption and decryption could be
asymmetric instead of symmetric. This process
would allow each party to have two keys, a public
key used for encrypting and a private key used for
decrypting. For Alice to send a message to Bob,
she would encrypt the message with Bob’s public
key which Bob could share over an insecure
channel as seen in Figure 7. When Bob receives
the message he could then decrypt the message
using his private key which he would keep secret.
The important aspect of this is that decryption can
only be done with the secret private key, so an
eavesdropper could not decrypt any intercepted
messages. Diffie worked together with Martin
Hellman to invent this idea, however they had
no mathematical way to construct such a system.
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Figure 7. A basic flow diagram for a public-key
cryptographic system [26]. This example shows what
keys are used when Alice encrypts a message to Bob,
and Bob unencrypts the message.

Merkle Puzzles While considering this problem
in 1974 Ralph Merkle a PhD student of Mar-
tin Hellman, published a protocol in which two
individuals could communicate over an insecure
channel and negotiate a shared secret without
an eavesdropper being able to learn the secret
key. The protocol involved Alice generating a
series of puzzles which were simply encrypted
messages that when unencrypted would reveal an
identifier and a session key. Each puzzle would be
encrypted with a different key short enough that
a brute force attack is possible and each identifier
and session key would be different. Alice would
send all of these puzzles to Bob. Bob would then
randomly select one of the puzzles and use a brute
force attack to get an identifier and session key.
Bob could then tell Alice the identifier and they
could then encrypt their messages back and forth
with each other using this session key. While the
process is simple for Alice and Bob, an attack by
an Eavesdropper is more difficult. Eve couldn’t
simply crack one of the puzzles, she would need
to statistically solve half of them before learning
the session key [27]. While this protocol is not
computationally complex enough for practical
usage it opened the door for the study of what
are called trapdoor functions, functions that are
computationally easy to perform in one direction
but very difficult to perform in reverse. It is this
discovery that led to the real world systems that
are still in use today.

Diffie-Helman Shortly after Merkle’s invention,
Hellman and Whitfield Diffie published their
proposed public-key cryptography system named
Diffie-Hellman key exchange and originated the
idea for a trapdoor function [28]. The protocol
involves the parties publicly choosing a large
prime number p, and a primitive root, base g. This
means that g is an integer less than p such that
for every number n from 0 to p there is a power
k such that n = gkmodp. Both parties would
then generate some random private integer value
a, or b. They would then calculate a public value
gamodp or gbmodp and share these values pub-
licly. After doing this they can calculate a shared
secret gba = (gb)amodp = (ga)bmodp = gab.
An eavesdropper can not directly calculate gba

unless they know either a or b. Since they do
not know either they have to attempt to solve
the discrete logarithm problem which is a very
difficult problem for large numbers.

This system is secure against a passive at-
tacker, or eavesdropper, however it can be at-
tacked by a Man-In-The-Middle, because there
isn’t a way for the two parties to authenticate to
each other. While Diffie and Hellman were work-
ing on this protocol, three other researchers were
simultaneuously working on their own solution,
one which satisfied the idea’s first proposed by
Diffie.

RSA After Diffie and Hellman published their
findings, computer scientists Ron Rivest and Adi
Shamir with mathematician Leonard Adleman
began looking for possible candidate one-way
functions that would be difficult to invert, similar
to Diffie-Helman trapdoor problems. The story
goes that Rivest, Shamir, and Adleman spent
Passover at a students home and apparently con-
sumed a significant amount of Manischewitz wine
before returning to their homes late that night.
Rivest returned unable to sleep, and lay on his
couch near his math textbook. While in this state,
he discovered a function that could satisfy their
problem. He spent the rest of night formalizing
the idea, by the next morning the mathematical
paper was nearly finished [29]. Together they
proposed their system Rivest-Shamir-Adleman or
RSA.

RSA involves 4 steps. First, users needed to
generate a private-public key pair. Second, they
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needed to share their public key over a reliable
but not necessarily secure channel. Next, using
modular exponentiation encryption and decryp-
tion are possible. The protocol is as follows [30]:
Key Generation

1) Choose two random prime numbers p, and
q.

2) Calculate n = pg.
3) Choose an encryption key e such that e and

(p− 1)(q − 1) are coprime.
4) Use the extended Euclidean algorithm to

compute the decryption key d

d = e−1mod((p− 1)(q − 1))

5) Finally, d becomes the private key and e
and n become the public key.

Encryption and Decryption

1) The cipher text is calculated using

c = memodn

2) The plain text can be calculated by

m = cdmodn

This algorithm security relies upon the as-
sumption that factoring large numbers is a dif-
ficult problem to solve [18]. If an attacker could
easily factor N into p and q. While no mathemat-
ical proof can show this difficulty, as of today the
largest publicly known factored RSA number is
829 bits which took 2700 CPU years to compute
[31]. RSA keys are typically between 1024, and
4096 bits long. These two protocols form the
bedrock for modern-day communication systems
such as the Transport Layer Security (TLS) used
in encrypting internet communications and secure
messaging applications like Signal.

The Future of Encryption
With this evolution of cryptography we reach

our modern age of cryptography. Since Shannon’s
work on proving the secrecy of systems, we’ve
developed systems that enable all of humanity
easy access to strong methods of encryption. This
is not without significant downsides. While these
strong methods protect users’ sensitive informa-
tion from hackers, or despotic regimes, it also
allows criminals and terrorists to communicate
securely with each other without fear of law
enforcement being able to intercept and read their
messages.

Encryption in Politics

Naturally, as these strong methods of encryp-
tion were published there was a push by gov-
ernments to restrict access to these tools. When
DES was first chosen as the standard encrpytion
technique, the NSA first had to approve the device
in which they required the key size to be reduced
presumably because they had the capability of
doing a brute force attack on that key size [32].
Throughout the Cold War and through he 1990’s
the US government implemented strict control
especially on the exporting of cryptographic al-
gorithms as they were determined to be non-
exportable weapons. After years of lawsuits and
public complaint, at the end of the 90’s most of
these restrictions were lifted and secure cryptog-
raphy was adopted worldwide.

Despite this success, even today the arguments
against uncrackable encrpytion thrive in the pub-
lic sphere. As internet connectivity expanded, and
the rise of the dark web, government authorities
have been hindered in their ability to stop the pro-
liferation of child pornography. With this issue,
the arguments against encryption rose again, with
the Attorney General of the United States Bill
Barr working with a Republican congress to enact
the Eliminating Abusive and Rampant Neglect of
Interactive Technologies Act of 2020 or EARN
IT Act. This act would require any providers of
end to end encryption provide back-door access to
the government, despite most security researchers
being opposed to such requirements [33]. These
experts believe primarily that creating a backdoor
for end to end encryption weakens the system
altogether, creating another vector for attack. Fur-
ther, with tech companies desire to expand their
market share into countries outside of the US,
it is likely that if a backdoor is created for the
US, countries such as China could also coerce
these companies to provide this backdoor access
for them in exchange for access to the Chinese
market. Whether this legislation is enacted, re-
mains to be seen.

Secure Messaging

Just as encryption allows evil to be per-
petuated online, it also protects activists, dissi-
dents, and journalists. Recently, secure messag-
ing ecosystems such as WhatsApp, and Signal
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have seen widespread adoption. These apps allow
users to communicate with each other with their
message being end to end encrypted. This allows
dissidents and activists to communicate sensi-
tive information with journalists and each other.
However, this has created the issue that users of
these apps could become targets. In China, many
individuals have reported being targeted by the
Chinese regime simply because they had secure
messaging apps on their phone [34]. For many,
the benefits provided outweigh these risks when
living in a surveillance state.

Homomorphic Encryption
One of the most interesting work being done

in cryptography currently is homomorphic en-
cryption. Homomorphic Encryption is simply an
encryption scheme that allow computations to be
performed on the ciphertext of some encrypted
data without decrypting the data first. Most sys-
tems such as AES do not have this property,
but there is a significant interest in developing a
system that would support this. It’s applications
can be far-reaching, however the primary inter-
estd parties are highly regulated industries such
as the health care industry. Homomorphic encryp-
tion would allow these industries to outsource
their data storage and computation to third-parties
such as cloud computing services, while simul-
taneously protecting their clients data. Google.
IBM, and others have proposed some types of
cryptosystems that would allow some forms of
calculations but there has yet to be a system
created that satisfies the necessary requirements.

Quantum Computing
Today, we have an incredible amount of com-

putational power. These advances in technology
have helped us to achieve the necessary compu-
tational resources needed for strong cryptography
to exist. However as technology evolves, there is
the worry among many that quantum computing
could make our modern cryptography obsolete.
In response to this worry, NIST has accepted
proposals for a quantum-resistant algorithms to
be standardized. Nearly 70 proposals were made
and the selection process has reduced the number
to 15. It is believed that a standard could be
implemented before quantum computing becomes
a real threat.

CONCLUSION
Throughout history encryption has primarily

been used by governments, and militaries to
protect government secrets and provide strategic
advantage. With the advent of the digital age, we
observe the great democratization of encryption.
Instead of only being used in rare circumstances,
today’s society uses cryptographic algorithms ev-
ery single day, whether they recognize it or not.
Understanding the evolution of encryption allows
us to understand the weaknesses in our modern
methods, and a systematic method for categoriz-
ing the security of encryption techniques.
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Modern Human Identification
Z. Casey Sun
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Abstract—The evolution of identity verification technology starts from the origin of human
civilization. People need to declare their exclusive ownership and privileges. Then the locks and
keys are invented. We list three types of human identification methods in this article and discuss
their state-of-the-art progress. These approaches coexist successfully in our modern life, as our
identification needs vary in different scenarios. We also introduce some novel works that explore
future identity verification methods. We also discuss the ethical problems in modern human
identification.

HUMAN IDENTIFICATION is the process of
verifying the identity of people. The verified
person may have access to restricted resources
or some privileges. Therefore, disapproved people
could abuse the trust-based rule. The approaches
to identify a person are very diversified. We
organize this article with the known taxonomy of
identification methods, see Figure 1, and intro-
duce the most popular ones and research trends.

The size of the human community has
changed from the tribe to the global. Our ances-
tors, who lived in clans, recognized people using
their appearances. When towns emerged, people
started to use signatures or seals. Nowadays, we
have the chance to meet people from anywhere
in the world. Biometric technology, such as face
recognition, could help users identify even people
we never see. Simultaneously, the manufacturing
industry is changing, metal forging is still essen-
tial, and semiconductor and integration circuits
are proliferating since the 3rd industrial revolu-
tion. We have seen some novel keys in our daily
life.

We will discuss the origin of some identity
verification methods and introduce significant or
popular ones. At the end of this article, we
will look at some new techniques proposed in
academics. We will also cover ethics in modern
human identification.

Knowledge
Ownership

Password

ExtrinsicIntrinsic
Biometrics Key

Figure 1: The taxonomy of identification meth-
ods. The examples are in the dotted box.

Keys
Locks and keys help people make themselves

the only person having access to their posses-
sions. The first key appeared about 6000 years
ago, but until 200 B.C., Romans started to use
forging technology to manufacture metal keys, a
prototype of our modern keys. Since the industrial
revolution in the late 18th century, the keys’
complexity and sophistication have significantly
increased. In recent years, the changes in the
traditional keys usually emphasize portability and
aesthetics.

We can see the disadvantages of using keys
for identification:

• Volatile—The metal keys have a long life, but
it could be lost or stolen.

• Replicability—Most keys are not very sophisti-
cated. People can make a copy easily. It means
more than one person could pass the identity
verification.

The magnetic stripe cards[1] are one kind of
modern key. In the 1950s, magnetic recording of
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Figure 2: The RFID transponder (tag) and
reader[3].

digital computer data on plastic tape coated with
iron oxide was invented. Then it was possible
to write and store confidential information into
a card. It is much lighter than a key and able to
store any binary data. The stored data is invisible
to human eyes. However, this technology shares
the same disadvantages as the traditional keys.
The card reader can make a copy of all of
the data inside. The magnetic stripe cards have
been popular for a long time. Some institutes
not asking for high-level security still use them.
When we talked about keys, we cannot avoid
the second disadvantage mentioned above, except
for what I cover later in the section on “Ethics
in Human Identification”. However, we already
solved the replicability problem in some advanced
keys.

Integrated Circuit cards
Financial institutions, such as the banks, have

noticed the replicability problem with magnetic
stripe cards. They are promoting the Integrated
Circuit (IC) cards. Each IC card has a computing
system on it [2]. Only the authoritative machine
can have access to the inside chip. This scheme
makes it nearly impossible to reproduce an IC
card without authority.

There are two kinds of IC cards. One is the
contact card, and the other is the contactless card.
There are eight metal contacts on the surface of
the card. They are physically connected to the
card reader at the verification stage to achieve
power supply and complete data communication.

The contactless IC cards use radio waves for
the communication between card and card reader.
This technology is called Radio Frequency Iden-
tification (RFID). Its typical working frequency is

13.56 MHz. The contactless IC tag in Figure 2 is
a passive RFID device. When the reader reads the
card, the signal sent by the reader is composed
of two parts: one is the power signal, which is
received by the card, and its LC circuit generates
instant energy to power the chip. The other part
is the instruction and data signal, which instructs
the chip to complete data reading and returns the
signal to the reader. BYU ID cards also have an
RFID tag inside. See Figure 3b.

Passwords
When people attempt to access a system, the

password is the most commonly used authentica-
tion approach. Before the modern computer age,
some mechanical locks already replace the key
using a passcode. The interface is the mechanical
keypad. If the keypad was in a designated state—
the input digit sequence is correct, the mechanical
system becomes unlocked. It is beautiful that
people can update the password later by changing
the inner state of the lock. The shortcoming is
that the lock’s total state space is usually limited;
the intruder can enumerate all the solutions to
unlock it. This kind of mechanical system is
also a computer. There is the state concept in
its design, which is the cornerstone of modern
computers.

Now that the internet and computers, includ-
ing laptops and smartphones, became necessities
of our daily life, we need to deal with lots of
passwords. The most common password we used
is the keyboard input sequence. Different scenar-
ios have different passwords rule. Some systems,
such as bank cards and phone SIM cards, only
require a personal identification number (PIN)
code, usually a 4-digit sequence. A PIN code
is easy to remember. While the system needs
a physical card and limited-time tries, it is still
secure. Most passwords we use in the digital
world are a sequence of at least six characters,
and each character chosen from the 94 possible
characters using the standard US keyboard. A 8-
character password potentially using the full 94
character space has over 722 quadrillion combi-
nations. Some systems add additional rules, such
as not using the common digit sequences, and
must contain at least one special character, etc.
We call these strong passwords. Strong passwords
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(a) Front
(b) Back

Figure 3: BYU ID card design.

Figure 4: The security questions[4].

can be very distinct but complicated and hard
to memorize. If the user writes down the pass-
word, it could be discovered by someone else.
Anyone possessing the correct code can act as
an authorized user. Some systems use a group of
passwords, which are the answers to 3 security
questions, see Figure 4. The solution space is
larger than the single strong passwords, but the
user could answer the question using their specific
life knowledge, which does not require the user’s
specific memory.

Another issue is that typing in a strong pass-
word on mobile devices may be inconvenient.
Android devices have a solution that uses the
customized pattern on the 9-node 3× 3 array as
the passcode, see Figure 5. The verification stage
could be done using a single hand and quickly.
The total number of possible unique patterns is
over 300k, but people usually only use the simple
ones among them. If the user only uses five
nodes to design the passcode, there are about 7k
patterns to choose from. The pattern lock has a
similar security level to a PIN, while the 4-digit
PIN code has 10k combinations. These systems
usually have a limitation on the try times, and are

Figure 5: The pattern examples of Android pat-
tern lock[5].

widely popular.

Password Manager Software
One disadvantage of the passwords is that

anyone knowing it can pass the identity verifi-
cation. The risk is either zero or very high. The
worst case is when some people use the same
password for all of their private accounts. Once
one of them is leaked, the hacker may try to
request access to the service provided by other
companies using the leaked password. The best
solution is to use a password manager software,
which helps the user design a distinct ultra-strong
password for each private account and store it.
Access to the software itself usually needs at
least two stages of identity verification to ensure
security.

Biometrics
In the section on keys, we discussed that

fraud could happen when the ownership of the
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Figure 6: Two types of skin on the human
body[8].

key is lost. When we use the smart ID card
on the BYU campus, the servicemen need to
check the profile photo printed on the card to
double-check the user’s identity. This procedure
employs face verification, which is on type of
biometrics. Each human subject has distinct genes
and nurtured training. It results in the biological
and behavioral differences between subjects[6].
Biometric research is about how to measure these
characteristics and utilize them in courtesy.

The common characteristics we have explored
include fingerprint, iris, face, voiceprint, and gait.
Due to the evolution of image sensors, mobile
computers, and computer vision algorithms, fin-
gerprint recognition and face recognition tech-
nologies have made significant progress in recent
years.

Fingerprint

The finger skin is different from the skin on
the face or arm. Finger skin has ridges[7] and
no hair. The fingerprints are distinct; they may
wrinkle with age, but the ridge pattern does not
change. Therefore, fingerprints could be the factor
for identity verification. Here we only discuss
its civilian use. There are tons of fingerprint
scanners, designed for attendance machines and
personal computers, in our life. The fingerprints
found at the crime scene are difficult to extract,
and also need different algorithms to handle the
low-quality samples.

A fingerprint scanner usually has two parts,
sensor and digital signal processor (DSP). Most
smartphones use a capacitive sensor. When a fin-
gerprint presses the chip’s surface, the sensor will
generate a charge difference and save the charge
distribution image. The attendance machines use
the optical sensor to capture the finger’s reflected
light and save the image. The optical sensor

usually has a higher power. However, when some
narrow bezel phones move the sensor under the
screen, they have to use the optical sensor. The
specific DSP chip can denoise and normalize
the fingerprint image. The last step is feature
extraction and matching. If the detected features
match the ones at the enrollment stage, the user’s
identity is verified.

Human fingerprints are different from physi-
cal keys, as the fingerprints are inherent and can-
not be shared. However, people can make lifelike
silicone fingers, and this technology has made the
fingerprint system vulnerable. For example, the
attendance machine is unreliable if there is no
surveillance system for reference. Some research
labs are exploring liveness detection and anti-
spoofing algorithms.

Face

Face appearance is not the most distinct in
biometric characteristics. However, face recogni-
tion is hand-free and contactless. This technology
has emerged since 50 years ago. The eigenface
[9] is a significant milestone. It uses the principal
components analysis (PCA) method to find the
most common facial features among the face im-
age pool. Then we can compute a distinct linear
combination of these features for the queried face
image, see Figure 7. The k-nearest neighbors (k-
NN) algorithm can find the matched face in the
database.

The evolution of face recognition technol-
ogy almost follows the evolution of computer
vision. The algorithms, such as local binary pat-
tern (LBP) and sparse representation, have im-
proved face recognition accuracy and robustness.
In recent years, the data-driven machine learning
approaches, like deep neural networks (DNN),
have shown tremendous success in computer vi-
sion applications. The deep convolutional neural
network (CNN) based models have outperformed
the traditional methods in almost every visual
computing task. It has also been confirmed that
CNNs work very well for face-related tasks in-
cluding face recognition [11], [12] and facial
expression recognition [13]. FaceNet [12] is the
least recent milestone, and it uses CNN as the
backbone structure.
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Figure 7: Face representation using Eigenfaces[10].

Figure 8: An example image of the human
iris[15].

Similar to fingerprint recognition technology,
researchers are exploring the anti-spoofing al-
gorithms for biometrics. There are also some
solutions using non-camera sensors. For exam-
ple, Some apple models use a dot projector and
infrared cameras to generate the 3D human face
model. This approach is robust but raises the
hardware cost.

Trends in Biometrics
The COVID-19 pandemic has affected this

area. As many people wear facial coverings in
public zones, face verification becomes disabled.
However, iris recognition technology still works.
The iris is the circular part between the black
pupil and the white sclera. As Figure 8 shows,
it contains interlaced spots, filaments, crowns,
stripes, crypts, etc. While the human face changes
throughout life and identical siblings could have
the same face appearance[14], the iris is distinct
between identical siblings and does not change.
As reading an iris needs a high-quality infrared
camera, only some Samsung phones employ this
feature. The market situation could change when
the pandemic becomes regular.

In the recent release of iOS, when the sensor
has detected a mask on the human face, the
keypad pops for PIN code input. Some companies
[16] have started research on identity recognition

Figure 9: Radio Human Biometrics[17].

with partially-shown faces. Cornell researchers
[17] have invented earphones with cameras to
observe the contour of the cheeks. We can expand
this technology to do identity verification. [18]
proposed a novel concept of radio biometrics. We
can implement the accurate human identification
and verification using commercial Wi-Fi devices
in a through-the-wall setting by time-reversal
(TR) technique, see Figure 9.

Ethics in Human Identification
In the Keys section, we introduce the iden-

tification method using physical devices (keys).
The most significant disadvantage is that the keys
could be lost or stolen. Some research work has
implanted the RFID tag into the human body
through surgery [19]. Then, the ownership ver-
ification process becomes the biometric verifi-
cation process. A second-party could track and
recognize the human without any effort. Those
subjects can exchange or modify their inherent
characteristics, resulting in severe damage to the
subject. If the surgery is irreversible, that will be
worse.

In the Password section, we clarify that
knowledge-based identification is secure if we
do not save it somewhere or give a third-party
a chance to see it. This conclusion becomes
incorrect in a brain-computer interface (BCI). The
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computer could be able to read all knowledge
we have for identification with non-intrusive BCI
technologies.

CONCLUSION
This article has reviewed the advantages and

disadvantages of the three kinds of identity ver-
ification methods. It introduces the RFID tech-
nology in smart IC cards, password manager
software, and iris recognition technology. These
new approaches are much more reliable than
their predecessors and are more diversified. We
have seen that some novel approaches, like radio
biometrics, are promising and will give us more
choices in the future.
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Natural Language
and Machines: the Evolution of
Natural Language Processing
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Abstract—Humans have long shown interest in having machines use and produce human-like
language. This idea, known as natural language processing (NLP), has been a part of computer
science for 70 years. The purpose of this paper is to explore the origins and evolution of machine
interaction with and use of natural human language. The importance of this idea was seen from
the early days of computer science and its evolution is also tightly intertwined with areas of
linguistics and artificial intelligence (AI). We trace the watershed events and principal players
through each of the three major eras in the history of NLP in an attempt to clearly illustrate how
and why machine interaction with natural language has evolved throughout the decades. We
also explore how innovations in other fields, particularly within the fields of AI and linguistics,
have led to innovations within the field of NLP.

THE IDEA of having a machine use and or
produce natural language was conceived well
before the 20th century. The invention of mass-
producing movable type and the printing press by
Johannes Gutenberg in the 1400s could perhaps
be considered the first fledgling step of NLP.
Another example of early interest in machine
usage of language is the writer automata, built
by Jaquet-Droz sometime in the mid-1700s, an
intricate machine which can be be programmed
to write any text with 40 or fewer characters
[1]. The concept of Machine Translation (MT),
a major area of NLP, in which a machine is used
to translate speech or text from one language
to another, was one of the earliest areas to be
explored in computer science. MT appears to
have made its debut in fiction as early as 1945 in
Murray Leinster’s scifi novelette, ”First Contact,”
in which a universal translating device is used
to help different species communicate with one
another [2].

Today machines can use and produce lan-

Figure 1. Writer automaton built by Jaquet-Droz.
(From [3]).
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guage in a myriad of applications, though, this
language is still far from what could be con-
sidered truly natural language. AI systems can
be trained to create text that reads in the same
style as a real person [4]. Topic models are NLP
systems that can be used to extract topics from
collections of texts [5]. NLP can also be used
to read the current mood of Twitter [6]. The
result can then be used to change the color on
a mood lamp to reflect that mood [7]. Google
translate can be used to automatically translate a
restaurant menu written in Chinese into English
or to help two people with no shared language
to communicate [8]. None of these systems are
yet perfect, but the progress that has been made
since the first conception of NLP is astounding.
What happened in between the birth of the idea
and its current vibrant applications? How did we
get from scifi dreams of automatic and universal
machine translation to, at least in some respects,
near-reality? The purpose of this paper is to
answer these questions.

There are three main periods in the history
of NLP: the Symbolic, Statistical, and Neural
eras [9], with each era named after the types
of NLP systems that were typically built during
that time period. We will explore each of these
eras, highlighting the people and innovations that
influenced them and led to the boom the field
is experiencing today. The areas of linguistics,
computer science, and AI have all either been
influenced by NLP or have been influential on
NLP. As such, we will also explore the evolution
of each of these areas in tandem, insofar as it
is beneficial to paint a clearer picture of the
evolution of NLP.

The Symbolic Era: 1950s - 1990s

The Turing Test
Alan Turing, often called the father of com-

puter science, was one of the first to draw atten-
tion to the important role NLP would play in a
true AI system [10]. His seminal paper, ”Com-
puting Machinery and Intelligence,” published in
1950, laid out the idea of the Turing test as a
way to test the intelligence of an AI system.
The Turing test consists of three key players:
two humans and the system to be tested. One
of the humans acts as a mediator. Each of the

three players are to be kept in separate locations
and interact with one another only through a
computer, by typing in questions and responses.
The mediator’s role is to ask questions of both
the other human and the AI system and use their
responses to make a guess as to which is the
human and which is the AI system. If the AI
system is able to consistently trick the mediator
into not knowing which is which, it can be said
to have passed the test. In order to pass the test
such a system must be able to demonstrate both
automated creation and comprehension of natural
language. The desire to create a system that can
truly be said to pass the Turing test has been a
motivator for continued work within NLP and AI
and inspired some of the systems which will be
discussed later in this paper.

Machine Translation and a Slow Start
The first notable foray into NLP came just

four years after Alan Turing’s Turing test pro-
posal. In 1954 the Georgetown-IBM experiment,
headed by Cuthbert Hurd and Leon Dostert, pro-
duced the first MT system [11]. Their system took
Russian sentences as input. They were input to the
system by a user with absolutely no Russian flu-
ency. The system then translated those sentences
into English and printed the translations as output.
Early MT systems like this one generally worked
by having a bilingual dictionary used to map
words from the first language to the second. Then,
the system would have a second step that would
rearrange the order of the translated words to fit
the word order of the target language. While these
early systems were rudimentary (the Georgetown-
IBM system could only provide accurate transla-
tions for around sixty carefully chosen sentences)
it gave insight into the potential power of using
machines to solve natural language problems, and
further research was begun.

In the summer of 1956 John McCarthy, along
with Marvin Minsky, Claude Shannon and sev-
eral other important early figures in computer
sicence, held the Dartmouth Conference [12]. The
conference had 11 attendees all coming together
to discuss ideas about intelligent machines. This
event is considered to be the birth of AI as a field.
Also of note is that NLP was mentioned in the
proposal as one topic of study the group would
be interested in exploring.
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Noam Chomsky was another notable figure
from this era of NLP. His 1957 Syntactic Struc-
tures helped NLP researchers realize the need for
mainstream linguistic knowledge within NLP [13]
[14]. This work introduced the idea of ’universal
grammar,’ the idea that certain aspects of lan-
guage structure are built into the human brain
and are universal across all languages and people.
Chomsky’s later linguistic theory on generative
grammar, also known as transformational gram-
mar, also had a strong influence on the field [15].
This theory purported that natural languages have
two structures: deep structures and surface struc-
tures, which connect phonetic rules with sounds
and connect words with meaning, respectively.
The connection between these two structures is
generative grammar. The idea of generative gram-
mar models language as a system of hard rules.
Generative grammars can be used to represent
syntactic structures as abstract symbols. A series
of simple rules can then be applied to a generic
input symbol to generate a desired output. The
theory, however, struggled to handle ambiguities
inherent in natural human language and began
to fall out of favor within linguistic and NLP
communities in the 1980s.

It was initially believed that MT would be an
easy problem to solve, with one of the partici-
pants in the Georgetown-IBM experiment claim-
ing in 1954 that this could likely be accomplished
within three to five years [11]. However, it has
now been seventy years since the dawn of NLP
and neither MT, nor NLP in general are consid-
ered solved problems.

Further research was conducted in MT follow-
ing the success of the Georgetown-IBM experi-
ment, but progress was slow. The systems created
were based on hand-calculated and hard-coded
rules. These systems were tedious to update and
they quickly became cumbersome to work with
if more than a few rules were used. Because of
this they were extremely difficult to maintain.

Then, the Automatic Language Processing
Advisory Committee (ALPAC) report of 1966
served a devastating blow to MT [16]. The re-
port was intended to provide the United States
government with an update on the status of NLP
and MT research. It portrayed the progress in
MT in an unfavorable light and encouraged more

emphasis on foundational research in the basics
of handling language data and in MT research.
For example, one proposal in the report was for
research to speed up human translations of texts,
rather than focusing on purely machine-based
translation systems. As a result of the ALPAC
report, funding for MT was severely cut. This area
of NLP received little attention for the next two
decades.

Progress in Other Areas

While MT was suffering from budget cuts,
other areas of NLP did see progress. Similar to
the early MT systems, systems in other areas of
NLP also relied on hard-coded, hand-calculated
rules during this era. While this method was
tedious and difficult to maintain, some of the
systems created during this era were still able
to perform impressive tasks. In some cases they
were even able to convince users that they had
some level of intelligence. Perhaps the best ex-
ample of this was Joseph Weizenbaum’s chatbot,
ELIZA [17] [18].

A chatbot is a computer program designed
to interact with human users. Typically a human
will enter a question or statement through an
online interface and the chatbot will respond. The
earliest chatbots took text as input. ELIZA was
one of the earliest notable chatbots.

Weizenbaum’s intention in creating ELIZA
was to show that communication between humans
and computers is superficial. He named the pro-
gram after the character Eliza Doolittle in George
Bernard Shaw’s Pygmalion [19]. The charac-
ter Eliza comes from a lower-class background,
which her natural language clearly advertises.
Throughout the play she learns to blend in with
the aristocracy, but still sometimes struggles to
understand them.

Similarly, the system ELIZA was designed to
give an illusion of being human, though it had
no real way of actually understanding humans.
A user would enter statements on a keyboard
as input and ELIZA would respond to the user.
Weizenbaum wrote programs for several different
scenarios, but the one ELIZA is best known for
was one in which the system played the role of a
Rogerian psychotherapist and the user plays the
role of a patient. This scenario was intended to
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play out as the first meeting between the thera-
pist and patient. Weizenbaum chose this scenario
because he thought it would be fairly easy to
mimic a Rogerian psychotherapist’s style, as they
tend to follow a pattern of mirroring back their
patients’ statements with different phrasing. He
also thought this scenario would be easy because,
in this setting if a patient is telling their therapist
about how they spent their weekend on a boat and
the therapist asks the patient to tell them about
boats, instead of assuming the therapist knows
nothing about boats, the patient will likely assume
the therapist has some deeper intention behind
their question. Weizenbaum hypothesized this as-
sumption that the patient would help maintain the
illusion that ELIZA was human-like [18].

ELIZA had no understanding of context, but
relied on a system of rules to choose its responses.
It would pick out keywords from the user’s input.
Those keywords could then be used to fill in a
response pattern to give the illusion of contextual
understanding. If no keywords were found in the
input, ELIZA still had several generic responses,
like ”I see,” that could be used to continue the
illusion. Weizenbaum had expected his illusion
to break down fairly quickly, however, it proved
more effective than he had anticipated. Despite
ELIZA’s having no contextual grasp and no hu-
man emotion, some users who interacted with
the system reported feeling that ELIZA could
understand them, as if they felt an emotional con-
nection with the program. Of this phenomenon
Weizenbaum wrote ”I had not realized ... that
extremely short exposures to a relatively simple
computer program could induce powerful delu-
sional thinking in quite normal people” [20].

While ELIZA likely would not have passed
the Turing test, the fact that it was able to illicit
an emotional response in multiple human users
shows remarkable progress in machine use of
natural language. ELIZA’s output was generally
grammatically correct and coherent. The system
was also able to respond to novel input, rather
than a limited number of carefully curated se-
lections. Ultimately, ELIZA is notable because it
was able to fool some human users into thinking
it was intelligent.

A similar system from this time period was
PARRY. PARRY was another chatbot, designed

Figure 2. Sample conversation with ELIZA from
a later implementation produced by Norbert Land-
steiner. (From [21]).

by Kenneth Colby in the early 1970s [22]. Colby
was a psychiatrist interested in studying how
computer science could benefit psychiatry, par-
ticularly by helping broaden understanding of
mental illness. PARRY was inspired by ELIZA,
but instead of being designed to act as the psy-
chiatrist, PARRY was designed to play the part
of a patient with paranoid schizophrenia.

PARRY was actually tested on a version of
the Turing test and was able to fool half of
the mediators, who were trained psychiatrists,
into believing the system was human. While this
success could be the result of several other factors
besides PARRY truly demonstrating intelligence,
the fact that the system was able to consistently
fool half of the mediators was a significant step
forward.

One amusing side note - ELIZA and PARRY
were allowed to ’meet’ and have ’conversations’
with one another on several occasions, with
ELIZA acting as the psychiatrist and PARRY as
the patient [22].

The Ball Gets Rolling

Research in NLP began to pick up in the
1980s and into the early 1990s. In the early
1980s there was still heavy emphasis on using
detailed, hand-written rules for NLP systems.
We will look briefly at two systems from this
time period: Rollo Carpenter’s Jabberwacky and
William Chamberlain and Thomas Etter’s Racter
[23] [24].
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Figure 3. “Helene spies herself in the enthralling
conic-section yet she is but an enrapturing reflection
of Bill. His consciousness contains a mirror, a sphere
in which to unfortunately see Helene. She adorns her
soul with desire while he watches her and widens
his thinking about enthralling love. Such are their
reflections.“ (From [24]).

Similar to ELIZA and PARRY, Jabberwacky
was a chatbot designed to carry on conversations
with users through use of the keyboard. Carpen-
ter’s sole intention in creating Jabberwacky was
to design a system to pass the Turing test. In 2011
one evolution of this chatbot was entered into a
formal Turing test with the human mediators who
judged that iteration of the system to be 59.3%
human, while the human participants were only
judged to be 63.3% human [25]. That version of
the Jabberwacky chatbot was named Cleverbot
and is still around today as an openly-available
online chatbot [23].

Racter, on the other hand, was notably used to
generate an entire book, The Policeman’s Beard
Is Half Constructed, in 1984. The code used
to generate the book was never released and
there is speculation as to the sophistication of
the program. Still, an entire book generated by a
computer in the 1980s was an impressive feat and
calls to mind more recent efforts, like the 2019
project Booksby.ai [26]. Booksby.ai is essentially
a bookstore offering books entirely created by AI,
from the cover art to the reviews. The language
from both systems falls very short of natural lan-
guage, but they do show significant steps forward.
See Figure 3 for an excerpt from Racter’s book.

Shifts within the field and innovations in
other areas, like corpus linguistics and computer
engineering, led to a move away from the sym-
bolic approaches and towards statistical systems.
Increases in computer power made machine learn-
ing algorithms more viable, while increases in

Figure 4. From left to right: Alan Turing, Noam Chom-
sky, and Joseph Weizenbaum. (From [27] [28] [29]).

computer storage capacities made it easier to store
large collections of linguistic data needed for
statistical approaches. Additionally, steps forward
within the field of corpus linguistics made it eas-
ier to acquire large collections of language data.
Finally, within the field of NLP itself, there was
a general push towards more general approaches
to solving NLP problems. These innovations,
working in tandem, eventually led to the second
era of NLP: the statistical era.

The Statistical Era: 1990s - 2010s

A Brief Introduction to Corpus Linguistics

Considering that corpora, or large collections
of real world language data, began to play a key
role in NLP during the statistical era, we will now
make a brief inspection of the history of corpus
linguistics. The word corpus comes from Latin
and means ’body.’ In corpus linguistics it is used
to refer to a body, or collection, of texts. One
main focus of corpus linguistics is to compile
collections of text samples that accurately reflect
how frequently each word appears and how words
pattern within a chosen language. This is because
corpora (the plural of corpus) are used in corpus
linguistics to study languages and how they work.
If a corpus is not truly representative of the
language it is intended to represent, then it cannot
be used to gain an accurate picture of word usage
in that language.

In the past corpora have typically been col-
lected for a specific purpose. A corpus may be
a collection of texts from a specific genre, time
period, geographic area, or any other grouping.
Mark Davies’ Corpus of Historical American En-
glish (COHA) is an example of a corpus designed
to be used for studying diachronic changes in
American English [30]. COHA contains text from
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many sources ranging from the 1810s all the way
up through the 2000s.

Before the advent of computers, corpora had
to be compiled by hand. Modern corpora that still
predated computers were often collections of odd
or interesting language usages an individual scrib-
bled down after coming across it in conversation
or while reading. One early corpus linguist, Otto
Jespersen, famously kept his text samples on little
strips of paper in shoe boxes strewn throughout
his villa [31]. It is easy to imagine that collecting,
storing, and analyzing these early corpora was
tedious. It would also be extremely difficult to
store a very large corpus in this format, let alone
use it. The creation of computers changed this.

As technology has advanced, computers have
made it possible to store very large corpora using
relatively little space. Computers have also made
it possible to quickly and more accurately analyze
information within corpora, in addition to making
it easier and faster to collect corpora - as typing is
certainly faster and easier than writing language
samples out by hand.

One of the earliest and most well-known
electronic corpora is the Brown Corpus [32] [33].
The Brown Corpus was compiled in the 1960s
at Brown University by Henry Kucera and W.
Nelson Francis. It is a collection of American
English text samples taken from various genres.
Every sample in the corpus is from the year 1961.
The corpus consists of approximately one million
words.

Electronic corpora have come a long way
since the Brown Corpus. Today the Corpus of
Contemporary American English (COCA), an-
other of Mark Davies’ online corpora, consists
of more than one billion words, sampled from
eight different genres [34]. COCA is periodi-
cally updated by Davies, so that it is continually
growing and can be relied on to contain truly
contemporary samples of American English.

Before we return to our study of the evolution
of NLP it is worth noting the limitations of cor-
pora. Natural language is messy. It was perhaps
a lack of fully understanding this that led early
researchers in MT to believe it could be solved
within a few short years. The truth is human
languages are constantly evolving, pattern differ-
ently in different scenarios, are used differently

by different groups of people, and often have ex-
ceptions that break strict rules we try to tie them
down with. As previously noted, historically, cor-
pora have been designed with specific purposes
in mind. The text samples collected are typically
taken from a pre-determined form of language,
like ’spoken’ or ’science fiction.’ The information
about what types of language a corpus represents
is important to know when using the corpus.
For example, if you were interested in studying
how the word terrorist was used in American
English in 1850 versus 2000, you would want a
corpus that had text from American English and
was sampled from the desired years. It would
also be helpful if the corpora were annotated
with the years the texts were sampled from so
you could easily make your desired comparison.
To use Mark Davies’ corpora as an example,
COHA would work well for this use case because
it is annotated for diachronic analysis and it
does contain American English. COCA, on the
other hand, would not be a good corpus to use
for this use case because it only has samples
going back to 1990. COCA would, however, be
an excellent choice if you were interested in
looking at whether the word terrorist appears in
contemporary American English more often in
samples of spoken English versus samples taken
from news networks. Figure 5 shows the results
of the COHA query. Unsurprisingly there are far
more occurrences in the year 2000 (957) than
there are in the year 1850 (1). Figure 6 shows
the results of the COCA query. In COCA we
can compare the results across different registers
(areas of language use) and time periods. We can
clearly see there are far more instances of the
word in spoken English (7367) than in the news
network category (4503). Looking at the left of
Figure 6 we can also clearly see a significant
spike in usage during the period from the year
2000 through the year 2004.

Corpora are becoming increasingly large.
With the advent of the internet and the rise of
social media, enormous amounts of textual data
are freely available to anyone willing to put in
the effort to collect it. It should be remembered,
however, that the corpora created by these vast
collections of data may not be representative
of natural language in general. The majority of
natural language data available online is written.
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Figure 5. Result of querying terrorist for 2000 and 1850 in COHA. (From [30]).

Figure 6. Result of querying terrorist in COCA. (From [34]).

Thus, while corpora created from online data is
absolutely useful and beneficial, it may not be
representative of, say, spoken language, and there-
fore may not be useful if you are wanting to use
a corpus to model spoken language. These giant
corpora, however, have proven to be extremely
useful in the neural era of NLP, which we will
discuss shortly.

Winter’s End and the Rise of Machine Learning

In the field of AI, the period extending from
1974 to 1980 is known as the first AI winter
[35]. Similar to the early days of MT, there was
initially great optimism and a flurry of research
in the field of AI. When the various branches of
AI research failed to deliver the desired results,
however, research funding was cut. This led to a
six-year dark age when little progress was made.

The first AI winter finally began to thaw
in 1980 and continued to do so throughout the
early 1980s as innovations led to renewed in-
terest in neural networks and machine learning.
Chomsky’s theories also began to fall out of
favor during this period. He had been skeptical
of using statistical models, but as his theories
became less popular, more researchers turned to

exploring statistical methods. During this time
there was also an increased push for greater em-
phasis on the quantitative evaluation of systems.
NLP systems during this period generally relied
heavily on the use of corpora and this era also
saw NLP become increasingly intertwined with
machine learning [36]. The shift away from using
intricate, tediously hand-calculated rules towards
using statistical inference allowed for systems that
could ’learn’ the rules of language on their own.
This allowed for more general solutions to NLP
problems than were previously possible.

MT saw renewed interest and success during
this period. Researchers were able to take ad-
vantage of multilingual corpora to train systems.
One notable MT system from this period is Babel
Fish, the first web-based translation tool [37]. It
was named after the universal translation ’device’
from Douglas Adams’ “The Hitchhiker’s Guide
to the Galaxy,” a multi-media series depicting
the intergalactic adventures of a human named
Arthur Dent [38]. In the series the babel fish
was described as being ”small, yellow and leech-
like,” and feeding on brainwaves. The characters
would insert these fish into their ears and could
instantly be able to perfectly understand anything
said in any language. This description appears to
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Figure 7. Original Babel Fish interface. Note the
”small, yellow” fish prominently displayed throughout
the interface as a nod to Adams’ series. (From [39]).

have informed the design of Yahoo!’s Babel Fish
website, as seen in Figure 7. The system was
created by Yahoo! in 1997 and could translate text
between thirteen different languages. While still
a far cry from its namesake’s ability to automati-
cally translate from any language to any other, it
was a huge step forward from the Georgetown-
IBM experiment. It could be considered a precur-
sor to today’s Google Translate.

DragonDictate (later known as Naturally-
Speaking) was another notable system from this
time period [40]. James Baker and his wife, Janet
M. Baker, founded the company Dragon Systems
in the early 1980s and worked to develop systems
for speech recognition. DragonDictate was the
first iteration of the Bakers’ system. One of the
major shortcomings of this system (and early
speech systems in general) was its inability to
distinguish between when one spoken word ended
and another began, thus requiring users to speak
input slowly, one word at a time. This shortcom-
ing was later resolved and the next iteration of
the system, NaturallySpeaking, was released in
1997 as the first speech recognition system able
to accept continuous speech as input.

Supervision

Many statistical methods focused on using
electronic corpora. One of the benefits of using

traditional corpora is that they are often annotated
in such a way that they can be useful for the task
they were designed to be used for. As this era
evolved, however, the internet became increas-
ingly prominent in daily life. People began to
use the internet for almost everything - buying,
selling, rating products, and communicating, in
addition to many others. As such, vast amounts
of raw text data became available. The raw data
of the internet, however, often has little or no
accompanying annotation. This made it difficult
for use in earlier ’supervised’ approaches that
required input data to have annotations. This
motivated a stronger focus on approaches that
did not require annotations, what are known as
’unsupervised’ approaches.

One example of these unsupervised ap-
proaches is David Blei’s Latent Dirichlet Allo-
cation (LDA) topic model, introduced in 2003
[41]. Topic models are statistical models used to
determine what abstract topics documents belong
to. LDA is based on two assumptions: that each
document belongs to multiple topics and that sim-
ilar documents (documents belonging to the same
topics) will use similar words. The topics chosen
by the model are abstract, meaning the model
does not assign an actual name or definition to
the topics. Instead, it represents each topic as
a distribution of the words appearing in it and
leaves it up to the user to interpret the assigned
topics. It should also be noted that LDA requires
the user to determine the number of topics the
model will find in advance.

LDA works by first randomly assigning each
word in each document a topic. Then, it chooses
a word from a document and updates the topic
assignment for that word. It does so by going
through each document and, for each word in
that document, going through each topic and
calculating two things. First, it calculates the
probability of seeing the current topic if we are in
the current document and second, the probability
of seeing the current word based on the current
topic. The results are then multiplied to get the
probability that the current word belongs to the
current topic. Finally, the word is assigned the
topic it has the highest probability of belonging
to. This process is repeated many times until the
topic assignments are relatively stable.
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LDA has become a staple topic modeling
algorithm and is still widely used today.

The Neural Era: 2010s - Present
The 2010s brought incredible steps forward in

NLP as neural networks began to be utilized to
solve various natural language problems. Neural
networks are intended to emulate the human
brain. One of their earliest and most rudimentary
forms, the perceptron, is an algorithm invented in
1958 by Frank Rosenblatt [42].

Figure 8 gives a graphical representation of a
perceptron. The input values (on the left side of
the image) are multiplied by weights. The weights
help determine which values are of higher or
lower importance. That is, a value with higher
importance would be multiplied with a higher
weight and vice versa. The results are combined
into the net input function, which is typically the
sum of all the weighted inputs. This is then passed
into the activation function, which will typically
check to see if the weighted sum from the net
input function is above a certain threshold. If it
is, then the perceptron ’fires’, similar to a neuron
in the brain. Typically ’firing’ would equate to
passing a 1 to the output and ’not firing’ would
equate to passing a 0 to the output. The output
of the perceptron is then checked against the
desired output and, if the actual output and the
desired output do not match, the weights of the
perceptron are adjusted to hopefully give a more
accurate result for its next input. The standard
equation for updating the weights is calculated
by subtracting the actual output from the desired
output and multiplying the result by a learning
rate, usually a decimal value that determines how
quickly the weights are changed, and by the input
value. This is calculated for each weight. The
results are added to the current weight values to
find the new weights.

In a basic neural network there will typically
be several layers comprised of many of these
’neurons’. In a ’fully-connected’ neural network,
all of the neurons from one layer will have
weights connecting each one to all of the neurons
in the next and previous layers. Deep neural
networks have many layers.

There have been many innovations in the area
of deep neural networks over the past decade that

Figure 8. Basic model of a perceptron. (From [43]).

have led to incredible steps forward in NLP. Two
of the notable innovations in NLP with neural
networks have been the introduction of word
embeddings and transformers.

Word embeddings are a way of representing
words as lists of numbers, also known as vectors.
Their popularity increased sigificantly in 2013
when Word2Vec was introduced by a team from
Google [44] [45]. Their approach uses a neural
network to model word associations as vectors
and is much faster than earlier approaches. One
observation that led to increased interest is that
Word2Vec was shown to be able to detect syn-
onymous and analogous words by looking at the
vector representations. One famous example is
that the vector for the word queen can be found
by subtracting the vector for man from the vector
for king and adding the result to the vector for
woman. Word2Vec is still widely used in NLP
today.

Transformers were first introduced in 2017
[46]. They use what is called an ”encoder-
decoder” design. This means they have two main
parts: an encoder and a decoder. The encoder
itself also has two parts. First it has what is called
a ”self-attention” layer. This layer looks both at
the specific word it is encoding and all the other
words in the input sample. The second part of
the encoder layer is a neural network. The output
from the self-attention layer is fed as input into
the neural network layer and the result is then
fed into the decoder layer. The decoder layer
has the same exact setup as the encoder layer,
with the exception that it also has what is called
an an ”attention” layer tucked between the self-
attention and neural network layers. The attention
layer helps the model pay attention to important
parts in the input sample. Transformers have been
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popular within NLP because they are able to
handle sequential data well, which is something
past models have struggled to do. Language is
sequential, so having a model that can handle
sequential data is useful.

Some of the most notable systems of this
era thus far have been Google Translate, Siri,
and GPT-3 [47] [48] [49]. Google Translate was
initially launched in 2006, but has undergone
numerous evolutions since then. It began using
a statistical model for MT, but in 2016 this was
switched to a neural network system [50]. While
not perfect, it can translate input between more
than 100 different languages, a vast improvement
from the days of Babel Fish. Its services have
also been expanded to include spoken and written
translations, in addition to translations of text in
images captured with a phone camera. It can even
translate hand-written text.

Siri is Apple Inc.’s virtual assistant. Siri was
initially released in 2011 and has also under-
gone numerous changes. It can be used to do
a variety of tasks on various Apple devices by
voice command. Siri can be used to make calls,
order products, set reminders, and many other
tasks. Over the past decade, Siri has become
a household name and a staple of Apple Inc.
devices.

GPT-3 is the latest iteration of OpenAI’s pre-
trained language models. It was first described
earlier this year and, similar to its predecessors, is
making waves within the NLP community. GPT-
3 is a pre-trained language model that can be
used to generate very realistic text. Research on
the original model, generative pre-training (GPT),
was released by Alec Radford et al. in 2018
[51]. This was followed in 2019 by GPT-2 [52].
GPT-2 made use of a transformer model. Results
from the model were so impressive that the actual
model itself was withheld from release to prevent
its being put to nefarious purposes [53]. GPT-3
was introduced in 2020 [49]. The model has yet
to be released as of the writing of this paper, but
the results have been impressive. It is important
to note, however, that these models still have no
grasp of context.

CONCLUSION
In summary, we have explored the evolution

of how machines interact with and generate nat-
ural language. While, at seventy years old, the

field is still relatively new, it has come a long
way from its earliest beginnings. We began with
the early days when a machine could only be
used to parrot hard-coded natural language. Then,
in the mid-twentieth century, we saw how early
programmers used complex, hand-coded rules to
begin solving slightly more generic problems,
though they were often limited to only being
accurate on a small subset of examples. As time
went on statistical methods were adopted that
allowed language models to begin to infer the
rules of language for themselves. Finally, we saw
the rise of neural networks, along with the rise
of electronic corpora and increased processing
power, that have allowed for the more powerful
models of today. While we are still far from
having a machine that can generate and interpret
natural language on a truly human level, in sev-
enty years we have come a long way.
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How Developments in
Mathematics led to Modern
Techniques in Language
Modeling

Jonathan Skaggs
Brigham Young University

Abstract—Language Modeling has a long, rich history. The task was originally tackled by
Chomsky and other linguists who tried to form a universal grammar for all languages. After,
Shannon defined a new type of language model, the statistical language model. Then came the
revolution of deep learning and with it the rise of neural language models. After this, came the
idea to represent words in the form of a vector space. This history describes the development of
the problem of language modeling. The history of the mathematics behind modern ideas in
language modeling happened independently until the two ideas were combined together with an
ideas called embedding spaces. The mathematical history starts with the initial definition of a
vector space by Peano. The idea continues to evolve with the more abstract ideas from Noether
called rings, groups, fields and the advent of abstract algebra. Hilbert and Banach continue to
develop specific types of vector spaces in the context of abstract algebra. These mathematical
ideas form the basis for the incorporation of these ideas into the modern techniques for
language modeling. The culmination of both of these ideas leads Mikolov and others to word
embeddings and sentence embeddings, the foundation of modern language modeling.

LANGUAGE MODELING is an important task
in computation and in the broad field of natural
language processing. The exact problem forma-
tion has varied from application to application
and over time. But the task more generally is
to represent natural languages (as opposed to
computer languages) in a computational form so
that a computer can learn to read, write and
generally interact well with people. Techniques
in language modeling are often implemented in
audio processing and natural language processing.
With recent advancements, language modeling
continues to be used in an increasing number of
tasks.

Language modeling, like most important

ideas, has a rich history with many people con-
tributing to its ideas. This makes it difficult to in-
clude all contributions even in a more comprehen-
sive history. This article attempts to cover the peo-
ple with the most groundbreaking contributions
to the field with specific emphasis on both the
history of the concept of language modeling and
the mathematical foundations of modern language
modeling. It starts with the mathematical back-
ground of vector spaces, abstract algebra, and
then continues to describe unique cases of vector
spaces called Hilbert spaces. After following the
evolution of these mathematical foundations, the
article continues to explain the history of the
concept of language modeling following influen-
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Figure 1. Giuseppe Peano was born on 27 August
1858 and died on 20 April 1932. He was an Italian
mathematician who work diligently on set theory and
logic. He wrote out the axioms of natural numbers
which are today called the Peano axioms in his honor.
He continued to be a brilliant mathematician and
wrote the axioms of a vector space.

tial ideas such as grammars, statistical models,
and neural models. Finally, by putting the two
histories together, the article will establish the
idea of embedding spaces.

Giuseppe Peano
Giuseppe Peano graduated from the Univer-

sity of Turin in 1880. Afterwords, he began his
professional career at the same University to work
under their chair of calculus, Angelo Genocchi.
Shortly after starting his career he published a
book on logic where he first used the modern
notation for unions and intersections [1].

Peano is most famous for defining the axioms
of natural numbers. The axioms are called the
Peano axioms in his honor. After defining the
Peano axioms, he continued to develop that field
of mathematics. In his work, he defined a vector

space for the first time. This work would lay the
ground work for mathematics of signal processing
and language modeling. Although his work with
vector spaces was super important, it was not
highly recognised until many years later when it
was rediscovered by Banach and others.

The following is the definition of a vector
space where x and y are elements of a vector
space V where 0 is the 0 vector; and c and d are
arbitrary scalar values:

Definition 2 Vector Space:

1) ∀x, y: x+ y = y + x
2) ∀x, y: (x+ y) + z = x+ (y + z)
3) ∀x, y: 0 + x = x+ 0 = x
4) ∀x, y: (−x) + x = x+ (−x) = 0
5) ∀x: 0x = 0
6) ∀x: 1x = x
7) ∀x, c, d: (cd)x = c(dx)
8) ∀x, y, c, d: c(x+ y) = cx+ cy
9) ∀x, c, d: (c+ d)x = cx+ dx

Axiom 1-4 describes how a vector space
must be closed under addition. It defines that
the result of adding two elements of the vector
space will also be a member of the vector space.
They establish an additive identity, and say that
addition is associative and commutative. Axioms
5-7 state that a vector space is closed under
scalar multiplication. It defines the existence of
a 0 vector and and identity vector. The last 2
axioms state that the distributive property holds.
The vector space defined here is the foundation
of signal processing that will be used later on to
create language modeling systems.

Vector spaces are an interesting idea as pre-
sented by Peano, but they lack the generality of
modern vector spaces. It may be hard to see at
first, but this added generality allows for appli-
cation to all sorts of problems. This generality
is later introduced as abstract algebra by Emmy
Noether.

Noether
Emmy Noether was a German mathematician

born in 1882. She was an influential mathemati-
cian, and according to Albert Einstein she was the
most important woman in the history of mathe-
matics. She lived during a time and place where
the role of woman in universities was limited. She
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Figure 2. Emmy Noether was born in March 1882
and died in April 1935. She studied at the University of
Erlangen and began her career in Mathematics there.
In 1915 she began work at the University of Göttingen
at the request of David Hilbert.

faced lots of gender discrimination but despite
this she consistently made great achievements to
her field.

She is often accredited with inventing abstract
algebra. Different types of algebra have been
forming for a long time, one of these being
the development of vector algebra, but abstract
algebra created an abstract version of all of the
different algebras unifying them all into one
algebra. This is important because that means
that a proof in abstract algebra is a proof in
all algebras. Her contributions allowed for the
creation of new abstract ideas in linear algebra
like groups, rings, and fields.[2] [3] Groups, rings,
and fields are fundamental concepts in abstract
algebra and consequently are fundamental in the
mathematics of signal processing.

Definition 3 A GROUP is a set G which is:

1) Closed under an operation ∗: ∀x, y ∈ G:
x ∗ y ∈ G

2) Has an identity element: ∀x ∈ G ∃e ∈ G
where e ∗ x = x ∗ e = x

3) Has an inverse element: ∀x ∈ G ∃y ∈ G
where x ∗ y = y ∗ x = e where e is the
identity

4) Is associative: ∀x, y, z ∈ G: x ∗ (y ∗ z) =
(x ∗ y) ∗ z

Definition 4 An ABELIAN is a group with
an additional requirement:

1) It commutative: ∀x, y ∈ G : x ∗ y = y ∗ x

Definition 5 A RING is a set R which is
closed under two operations + and ∗ and sat-
isfying the following properties:

1) R is an abelian group under +
2) Associativity of ∗: ∀a, b, c ∈ R: a∗(b∗c) =

(a ∗ b) ∗ c
3) Distributive Properties: ∀a, b, c ∈ R: a ∗

(b+c) = (a∗b)+(a∗c) and (b+c)∗a =
b ∗ a+ c ∗ a

Definition 6 A FIELD is a set F which is
closed under two operations + and ∗ such that

1) F is an abelian group under +
2) F is an abelian group under ∗
3) Distributive Properties: ∀a, b, c ∈ F :

a ∗ (b+ c) = (a ∗ b) + (a ∗ c) and
(b+ c) ∗ a = b ∗ a+ c ∗ a

Each of these definitions is an important con-
tribution to the understanding of a vector space.
A vector space can be defined over a field. This
understanding of fields allows for the application
of vector spaces on different fields. Examples of
some fields are the set of all real numbers Rn,
the set of all complex numbers Cn, or the set of
all rational numbers Qn.

Once Noether had defined abstract algebra,
the idea of vector spaces was given a larger
context in which it could be studied. With this
larger context came the rise to two special kinds
of vector spaces: Hilbert and Banach spaces.
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Figure 3. David Hilbert was a German mathematician
born in January 1862 and died February 1943. He is
known as one of the most important mathematicians
ever. He contributed heavily to the fields of commu-
tative algebra, algebraic number theory, proof theory,
and logical mathematics.

Hilbert, and Banach
Shortly after the rise of abstract algebra David

Hilbert and later Stefan Banach each introduced
a new type of vector space. [4] [5] Today we
call these unique vector spaces Hilbert spaces and
Banach spaces in their honor.

In order to understand Hilbert and Banach
spaces, it is important to understand the purpose
of both a norm and an inner product. A norm
measures the distance of a vector from the origin.
The distance of a norm can be defined in ways
other than the common euclidean distance. See
definition 7 for an exact definition and some
examples.

Definition 7 Norm:

1) ||x|| ≥ 0∀(x ∈ S)
2) ||x|| = 0 if and only if x = 0

3) ||cx|| = |c|||x|| where c is a scalar
4) ||x+ y|| ≤ ||x||+ ||y||, this is also known

as the triangle inequality

Some Common norms are as follows:

1) L1 Norm: ||x(t)||1 =
∫ b

a |x(t)|dt
2) L2 Norm: ||x(t)||2 = (

∫ b

a |x(t)|2dt)1/2
3) L∞ Norm: supt∈[a,b]|x(t)| (The supremum

function (sup) is similar to the max function
but it works better with limits.)

4) Lp Norm: ||x(t)||p =
∫ b

a |x(t)|2dt for 1 ≤
p <∞

An inner product is used to measure the
similarity between two vectors. If two vectors are
orthogonal then the inner product is 0. If the vec-
tors are normalized than the maximum similarity
score would be 1. Therefore, the inner product of
normalized vectors results in a similarity score of
the two vectors between 0-1.

Definition 8 Inner Product:

1) 〈x, y〉 = 〈y, x〉 where the bar represents
the complex conjugate

2) 〈αx, y〉 = α〈x, y〉
3) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
4) 〈x, x〉 > 0 if x 6= 0 and 〈x, x〉 = 0 if and

only if x = 0

Definition 9 Complete:

1) A space is Complete if every Cauchy se-
quence in the space is convergent to a
member of the space.

A Banach space is defined as a complete
normed vector space, and a Hilbert space is
defined as a Banach space with an inner prod-
uct. Both spaces are complete which put simply
means that every converging sequence in the
space converges to a number in the space.

Signal Processing Toward Enhanced
Language Modeling

The different types of vector spaces and ac-
companying definitions covered up until now are
the culmination of mathematical ideas that form
the base of all modern techniques in signal pro-
cessing.

The mathematics of signal processing is an
interesting field because it has seemingly endless
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Figure 4. Norm Chomsky is a linguist and cognitive
scientist born in December 1928. During Chomsky’s
career he contributed so much to the field of lin-
guistics that he is often called the father of modern
linguistics. He was a professor at the University of
Arizona and Massachusetts Institute of Technology.

applications. It has been used in audio processing,
image processing, natural language processing,
radio processing, radar processing, data compres-
sion, and much more.

The remainder of this article will focus on
the mostly independent history of the evolution
of language modeling. It will then explain how
digital signal processing techniques led to the
use of vector space representations in language
modeling in the form of word and sentence em-
beddings.

Chomsky
Noam Chomsky was a linguist who discov-

ered the abstract idea of a grammar. He continued
his career and established what is today referred
to as the Chomsky hierarchy. [6] The basic idea
of this hierarchy is to categorize different existing
grammars into a hierarchy. The hierarchy says
that regular grammars are a subset of context-free

grammars which are a subset of context-sensitive
grammars which are a subset of recursively enu-
merable grammars.

Definition 10 A regular grammar G has four
components, G = (N,Σ, P, S) with the follow-
ing conditions:

1) N is a nonempty, finite set of non-terminal
symbols.

2) Σ is a set of terminal symbols.
3) P is a set of grammar rules that map non-

terminal symbols to terminal symbols.
4) S ∈ N and S is the start symbol.

Each of the grammars in Chomsky’s hierarchy
have unique applications. Notably, recursively
enumerable grammars are comparable Turing ma-
chines, or they describe the theoretical potential
of computers.

In terms of language modeling, the hierarchy
was believed to be extendable from programming
languages to natural languages (ie. English, Span-
ish, ...) as well. Which led Chomsky to the idea of
a universal grammar innate in human physiology
that allows people to learn natural languages. [7]

Chomsky disliked the idea of statistical lan-
guage models. He believed that the best form
of language models would come from analysing
different types of grammars and formally defining
a universal grammar for which natural languages
could be build. He supposed that all natural
languages follow rules from a universal grammar
innate to humans. In other words, the human
brain is born with a grammar with which they
learn to understand language. If this language is
discovered then all natural languages could be
written in this universal form and could improve
the task of language modeling. No such grammar
has as of yet been discovered, but there are many
people who believe this theory and continue to
try to develop this idea.

Shannon
Despite Chomsky’s dislike of statistical lan-

guage models, Claude Shannon formulated the
statistical language model problem. [8] The prob-
lem is as follows: Given a sequence of words,
what is the likelihood of the next word of each
word from the vocabulary of all possible words.
The purpose of a statistical language model is to
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Figure 5. Claude Elwood Shannon was an American
mathematician born in April 1916 and died in Febru-
ary 2001. In his career he was a important mathe-
matician and electrical engineer. He is accredited as
the founder of information theory. He also contributed
heavily to cryptography for national defence during
World War II.

model the probability of each word in a sequence
P (w1, w2...wn). An n-gram is simply a sequence
of n words. The simplest n-gram model is called
the unigram model. In this case, the sequence
of words is actually just a single word. This
language model stores the number of times each
word shows up and then predicts the probabil-
ity of each word as the (number of times the
word shows up) divided by the (sum of the total
number of words). The unigram model finds the
probability of a word x as the P (wn). A bigram
model uses the previous word to determine the
probability of the current word. This model finds
the probability of a word x as the P (w|wn−1).
Similarly trigrams determine P (w|wn−1, wn−2)
and 4-grams P (w|wn−1, wn−2, wn−3) and so on.

Definition 11 A trigram is defined as :

Figure 6. This figure is the network architecture of
the first neural language model created by Bengio [].
Bengio was born in 1946 in France. He is a professor
at the University of Montreal, Canada. He is most well
known for his work in deep learning.

P (wn|wn−1, wn−2) = c(wn−2,wn−1,wn)

c(wn−2,wn−1,∗) where

1) wn is a particular word in the vocabulary
2) wn−2, and wn−1 are the previous two given

words in the sequence
3) c is the count function so that c(”I”, ”love”,

”food”) is the number of times the sequence
[”I”, ”love”, ”food”] has been seen by our
model.

4) ∗ represents all possible words so that c(”I”,
”love”, *) would be the number of times
the sequence [”I”, ”love”] was followed by
another word.

The n-gram model seems to be a great lan-
guage model but it also has some difficult techni-
cal issues. For instance, it is difficult to deal with
out of vocabulary words. The n-gram language
model assumes that the same sequences that
appeared in the past will appear with the same
frequency in the future. This may be generally
true of short sequences but the world environment
is constantly changing and therefore people are
expressing ideas that have never before been ex-
pressed. Therefore, as n increases the assumption
that n-grams from the past will be displayed in
the future is violated. There will never be enough
data to overcome this issue.
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Bengio
In recent years, the use of deep learning has

been on the rise, and with this, deep neural
networks have been applied to many different
areas that they may not have otherwise. Lan-
guage modeling has been changed as well by this
revolution. The first neural language model was
proposed be Yoshua Bengio. This language model
takes the previous words as input and outputs the
probability that each word in the vocabulary is
the next word in the sequence, similar to the n-
gram language mode. The difference being that
this model does not use probability to solve the
problem but instead uses a learned function ap-
proximation. (see figure 6 for the model structure)

Collobert and Weston
Ronan Collobert and Jason Weston started

to represent language models using embedding
spaces.[9] Language modeling for the first time
was using the mathematical foundations created
by Peano, Noether, Bananch, Hilbert, and others.

Collobert and Weston described a concept
known as word embeddings or embedding spaces.
The idea behind embedding spaces is to use a
neural network to approximate a Hilbert Space in
a meaningful way. An embedding space needs a
norm to calculate the length of a vector and an
inner product to calculate the distance between
vectors.

The concept of representing words as a Hilbert
Space for the purpose of comparing words was
an interesting one. An embedding is complete,
normed, and has a defined inner product therefore
it is a Hilbert Space. Although setting a language
model as a Hilbert space is interesting, it is
not without complication. How should the neural
network architecture be set up so that it learns a
meaningful representation.

As an example, in order to demonstrate the
difficulty of this task, imaging taking a dictionary
and using a one-hot encoding for each word in the
vocabulary. This is a valid representation of the
words. We have a Hilbert space, or embedding
space, E ∈ Rv where R is the space of real
numbers and v is the size of the vocabulary. Also
suppose the inner product is defined as the dot
product and the norm is the induced norm. In
this space all words are equally far away, the

Figure 7. Thomas Mikolov is a Czech computer
scientist. In his career he is known for his work in
deep learning and natural language processing. His
most notable accomplishment is Word2vec.

inner product of any two vectors in a one hot
encoding is 0. This space is useless. It describes
words as being linearly independent and having
no relationship with any other words. How then
should the encoder be set up? In my opinion,
this question defines modern research in deep
language modeling.

Mikolov

To remedy this problem Thomas Mikolov
created word2vec.[10] He set up his embedding
space under the assumption that words that appear
in the same context have similar meaning. This
technique was shown to have interesting proper-
ties like vector math. The classic example that is
all over the internet is if you take the vector for
“king”, subtract the vector for “man”, and add the
vector for “woman”, then the result is the vector
for “queen”, or at least it is close.

In current research there continues to be the
debate of how to set up the problem in order
to get a meaningful embedding space. One prob-
lem with Mikolov’s model for word embeddings
is that they capture syntactic meaning instead
of semantic meaning. Syntactic meaning is the
meaning of the relationship of a word to the
words around it; it can be thought of as gram-
mar relationship. Semantic meaning, on the other
hand, captures what the word represents in the
real world. These two meanings are similar and
have a lot of overlap, but arguably the issues
found in Word2vec all stem for this difference.
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Figure 8. The idea behind Word2vec is to capture the
semantic meaning of words using vectors. This figure
shows an example of the concept by plotting countries
and their capitals using principle component analysis
for dimensionality reduction.

Modern Research Directions
After obtaining meaningful semantic word

embeddings, or an approximation of this, how are
words combined in order to create embeddings
of an idea? That is where sentence embeddings
come in. The task of sentence embeddings is
given an ordered list of word embeddings to
create a semantic approximation in a vector space.
Like word embeddings, sentence embeddings are
also Hilbert spaces and have similar concerns
of syntactic meaning vs semantic meaning. Al-
though there is also concerns about what sentence
vector math can and should look like in order to
achieve the best results.

There continues to be a lot of research into
both word and sentence embeddings. [11] [12]
[13] [14] [15] [16] [17] The most notable current
state of the art language models are Bert and
GPT-2. [18] [19] Each of these language mod-
els use the same underling concepts to form a
sentence embedding. It will be interesting to see
how this idea continues to evolve and progress.
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Machine Translation
J. S. Rydalch
Brigham Young University

Abstract—This paper covers the history of different approaches taken in machine translation
along with brief technical overviews for each approach. The first main group of translation
approaches is rule-based machine translation. This includes the early direct translation
approach used by initial researchers, the more abstract interlingua approach, and the transfer
approach that utilizes advances made in the direct and interlingua approaches. The paper then
covers the departure from rule-based systems in the form of example based machine translation,
statistical machine translation, and neural machine translation.

THE DEVELOPMENT OF MACHINE TRANS-
LATION has had a large number of researchers
and contributors, ranging from diverse back-
grounds. Influenced by ideas from information
theory, computer science, statistics, linguistics,
and deep learning, it is a multi-faceted area of
research. Initially spurred on by international in-
terests and focused on Russian and English trans-
lation, it has shifted over time to incorporate every
living language on the planet, and some dead
languages as well. At its core, machine translation
is concerned with the problem of transforming
information from one language to another. As
technology as a whole has grown more sophis-
ticated, some machine translation problems focus
on the spoken word and real-time translation, but
machine translation has historically been purely
text based. A plethora of methods for machine
translation have been proposed, and these ap-
proaches have been iterated upon and combined
to create the existing systems in use today.

ORIGINS
Aspects of the idea of machine translation

have existed and been proposed by great thinkers
for hundreds of years. One of the major ap-
proaches finds its root in the musings of Leibniz
and his universal characteristic. This was Leib-
niz’s dream of a series of symbols or an alphabet
in which the entire scope of human thought could

be represented [1]. With such an approach, one
could simply create a methodology to transform
one language into this universal language and
then have a separate process to generate text in
another language. While such an approach was
initially considered, attempts to create such a
system were not seriously undertaken at first.

As one of the original uses for mechani-
cal computers was cryptography, the problem
of translating information from one form to an-
other was already associated with computation.
However, the beginning of research into machine
translation stems from a memorandum sent by
Warren Weaver in 1949 [2]. This memo, which
was sent to some 200 of Weaver’s colleagues,
recounts a few experiences and observations
Weaver had concerning cryptography and how
similar approaches could be used to translate from
plain text of one language to another. It also cov-
ers some of the earliest experiments undertaken
in machine translation by Richard H. Richens and
Andrew D. Booth in England using punch cards
and simple word for word substitution, which
they expanded upon and published at a later date
[3]. Interestingly, Weaver also explores concepts
of statistical machine translation in this memo,
which while not initially experimented with, re-
emerged in the late 1980s and developed into a
major area of study.
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Machine Translation: A Brief History

Figure 1. Direct Machine Translation System. In direct machine translation, individual words from the source
language are substituted for the equivalent target language word based on the included dictionaries. Then, the
substituted words are ordered and manipulated according to any rules, grammatical or otherwise, included in
the program.

EARLY EXPERIMENTS

The title of the first researcher in the field of
machine translation is often given to Yehoshua
Bar-Hillel. A veteran of World War II, Bar-Hillel
received a PhD in Philosophy from the Hebrew
University and completed a post-doctorate at the
University of Chicago in 1950. Following that
post-doctorate, he joined IBM in May of 1951
and began work on machine translation. Bar-
Hillel organized the first International Conference
on Machine Translation, and virtually every active
researcher in the field attended [4]. Even this
early on in the history of machine translation,
it was considered impossible to generate high
quality translations purely automatically. Most re-
searchers agreed that human intervention at some
stage of the process would be necessary. Not all
considered that this would always be the case,
but the majority opinion was that mechanical
translation could not completely replace human
effort. One attendee of note was Léon Dostert of
Georgetown University. He suggested that a pub-
lic demonstration of machine translation could
spark interest and secure funding for research into
machine translation.

Then in 1954, Léon Dostert in collaboration
with IBM set up a public demonstration in an
attempt to prove the viability of machine transla-
tion. This demonstration utilized a small dictio-
nary set of words and hand selected examples of
Russian sentences that the system could handle.
This demonstration was successful enough to spur
on the creation of multiple other machine transla-
tion research projects, both in various institutions
in the USA and throughout the world.

In the same year, the first machine translation
journal was founded by William Locke and by
Victor Yngve, who had succeeded Bar-Hillel at
MIT in 1953. Also in this year, the first doctoral
thesis in machine translation was completed by
Anthony G. Oettinger. The years 1954 and 1955
saw the foundation of a group in Cambridge,
England, under Margaret Masterman, a group in
Milan under Silvio Ceccato, the first Russian
groups at the Institute of Precise Mechanics and
Computer Technology, the Institute of Applied
Mathematics, Leningrad University, etc. and the
start of various Chinese and Japanese projects.
And in 1955 the first MT book appeared, a
collection edited by Locke and Booth (1955),
including Weaver’s 1949 memorandum, Booth
and Richens’ experiments, some papers given at
the 1952 conference, and other contributions from
Bar-Hillel, Dostert, Oettinger, Reifler, and Yngve
[4].

The Direct Translation Approach

The approach utilized in the Georgetown Uni-
versity demonstration and in many other early
systems is often called the ‘direct translation’
approach. This approach is designed for a specific
pair of languages and works in only one direction.
It translates from the source language (SL) into
the target language (TL). Each new pair of lan-
guages requires a new system to be developed.
The systems in question usually consisted of two
parts: a large dictionary mapping words from the
source language to the target language, and a
large program in charge of text generation and
analysis.
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Figure 2. A Vauquois triangle, used to represent
the idea behind different levels of translation. As
approaches move higher on the triangle, they involve
more abstraction and analysis. For example, the inter-
lingua approach involves abstracting the source text
entirely, while direct translation involves little analysis
or abstraction.

The development of these direct translation
programs, later called the ‘brute force’ method
by Paul Garvin (a prominent researcher during
the 1960s) [5], consisted of developing a program
to translate a specific corpus from the source
language into the target language and then testing
the program on a new corpus and making ad-
ditions and adjustments until the program could
translate the new corpus. This process would be
repeated on newer and larger corpora, gradually
creating an incredibly complicated program with
small exceptions and grammatical rules appear-
ing scattered throughout the program. Without
a structured approach, many of these programs
were nearly impossible to iterate on after a certain
point and were rarely modified after deployment.

The issue with these methods was that virtu-
ally every effort for one program was not usable
in other programs. For example, creating a pro-
gram to translate from German to English, the
sentence “Das Papier ist weiß” into the English
equivalent “The paper is white” can mostly be
accomplished via dictionary substitution. “Das”
becomes “The” and a rule would be included
for post-processing to capitalize the first letter
of the sentence. The next three words translate
directly. This is a toy example however, and more
complicated words and phrases could cause issues

in the choice of English synonyms. Even if the
German to English translation program worked
flawlessly, it could not simply be turned around
to produce English to German translations. For
example, German has masculine, feminine, and
neuter noun cases. When translating from German
to English, “der”, “die”, and “das” all translate
to “the.” However, translating from English to
German, a special rule must be involved that
looks at the noun following “the” and determines
its gender. In the direct translation approach,
researchers and programmers would repeatedly
tackle issues by adding additional rules or ex-
panding the translation dictionaries, but it is read-
ily apparent how such an approach would quickly
lead to an incomprehensible mess of proprietary
rules and quick fixes.

These direct approaches did not involve lin-
guistics in any major capacity, and while initial
progress had seemed swift, the National Science
Foundation created the Automatic Language Pro-
cessing Advisory Committee (ALPAC) to review
the efforts and progress being made on machine
translation. They released a crippling report in
1966 [5] that described machine translation as
slower, less accurate and twice as expensive as
human translation, recommending no further in-
vestment. ALPAC recommended that instead of
attempting to create fully automatic high qual-
ity translation systems, research should focus on
machine aids for translators, such as automatic
dictionaries. This report severely curtailed the
machine translation research occurring in the
USA for over a decade, with many projects
being shut down entirely. This was a dark period
for machine translation, with many researchers
and professionals seeing machine translation as
a failure.

DEVELOPING ALTERNATE
METHODS

Following the ALPAC report in 1966, the
remaining groups continuing to research ma-
chine translation began to focus on different
approaches. Whereas most of the methods so
far had focused on direct translation, with little
thought given to linguistic aspects, this period
developed the interlingua approach. The basic
idea behind the interlingua approach is that in-
stead of translating one language to another via
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Figure 3. Interlingual Machine Translation System. Interlingual machine translation systems attempt to first
convert a source language text into an abstract interlingua. From this representation, text in the target language
can be created.

word substitution and corpus specific grammat-
ical rules, the SL would be translated into an
abstract interlingua representation. From this in-
terlingua representation, text in the TL could be
generated. This approach hearkens back to Leib-
niz’s universal characteristic idea, and had many
appealing properties. If a standardized interlingua
could be created, then independent groups could
create encoders and decoders that transformed
a particular language into interlingua and inter-
lingua into their particular language. So for a
multilingual translation system involving n lan-
guages, only 2n programs are needed, as opposed
to the direct translation approach, which would
need n(n-1) language pairs to achieve the same
results [6]. On a worldwide scale, a system could
potentially be developed to allow a series of
encoders and decoders to translate a text in any
source language into any target language, simply
by collecting and utilizing the various encoders
and decoders developed by independent groups.
While this grand vision of interlingua translation
was never fully realized, the research into this
approach revealed important new approaches and
methods of thinking about machine translation.

The USA was not the only region to research
machine translation. Due to their bicultural setup,
Canada had need for translations from French to
English and English to French. Europe too was
invested in creating systems that could translate
between the various languages in use by Euro-
pean powers. France had created ‘Centre d’Etudes
pour la Traduction Automatique’ (CETA), an
organization focused on machine translation. This
had split into CETA-P in Paris and CETA-G in
Grenoble. Bernard Vauquois’s group at Grenoble
University in France developed a rudimentary
interlingua translation method from 1960 to 1971
[7]. Their approach was not a pure interlingua.

It utilized syntactic analysis to generate an ab-
stract representation of the relationships between
the predicates and arguments of the text. Actual
words and phrases were translated via a bilingual
transfer, similar to the direct translation approach.
However, after converting the words into the TL,
the abstract representation was used to order these
words and phrases and generate TL sentences
based off of that structure.

During this period, other groups also adopted
and experimented with interlingua approaches,
including groups at the Linguistic Research Cen-
ter (LRC) in Texas, and Mel’chuk, a prominent
Soviet Union researcher. However, by the mid
1970’s, the interlingua approach was still wracked
with major issues that raised concerns about its
potential. At any stage of the process, if a proper
analysis fails, the entire translation fails as well.
This necessitated the creation of incredibly robust
parsers, which led to inefficiencies as even for
simple translations the parsers would need to
consider edge cases and complicated potential
meanings. Another argument against interlingua
translation was the inherent loss of information
that occurs when encoding into interlingua. Direct
translation can rely on the SL sentence for the
entire translation process, allowing it to glean
information from the SL that would help in
determining proper forms and sentence struc-
tures for the TL. Without a lossless interlingua,
information would be lost upon the encoding
into interlingua that the decoders could not use,
leading to complications that other approaches
would not have [6].

REVITALIZATION AND THE
TRANSFER APPROACH

As a compromise between the pure abstrac-
tion of interlingua approach and the nonexistent
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Figure 4. Transfer Machine Translation System. Transfer based systems are broken into three steps. First is
the analysis of the source language to generate an abstract representation unique to the source language. This
representation is then transferred into a similar abstract representation unique to the target language. From the
target language representation, text in the target language is synthesized.

abstraction of the direct approach, researchers
developed the transfer approach. The main idea
behind the transfer approach is similar to inter-
lingua, but split into two proprietary abstractions
for both the source language and target language.
The SL is analyzed and transformed into an
abstract SL representation. This representation is
then ‘transferred’ and converted into an abstract
TL representation. From that TL representation,
text in the TL is generated. This approach, while
less ambitious and lacking some of the potential
benefits of interlingua, was much more attainable.
The transfer approach had the advantage of using
linguistic analysis, but without the same degree
of loss of information present in interlingua ap-
proaches.

From the mid 1970s until the end of the
1980s, much of the research into machine trans-
lation was focused on transfer machine trans-
lation. The Grenoble group, eventually began
development of its Ariane system. This system
is often regarded as the “paradigm of the ‘second
generation’ of linguistics-based transfer systems.”
[6]. While the Ariane system was never deployed
in practice, it was incredibly influential for this
period, and many of the systems developed world-
wide share a striking similarity to the concepts
explored with Ariane.

Japan saw significant interest and investment
in machine translation in the 1980. One of the
lead researchers in Japan at the time was Makoto
Nagao, who led the Mu project at the Uni-
versity of Kyoto. The Mu project incorporated
the three-stage transfer approach that most of
the networks of the period used. However, the
significant iterations in the form of case gram-
mar analysis and dependency tree representations,
along with the development of GRADE, a system

used to describe linguistic grammars (GRAmmar
DEscriber), cemented its foundational position
for machine translation in Japan. The system
developed by the Mu project was focused on
translating technical papers from Japanese, and
their 1986 prototype was used by the Japanese
Information Center for Science and Technology
to translate abstracts [4].

One of the more famous machine translation
efforts is know as SYSTRAN. SYSTRAN was
founded in 1968 by Peter Toma and was not
nearly as affected by the ALPAC report of 1966.
Originally started as a direct translation effort
based off of the work done for the George-
town demonstration, SYSTRAN quickly became
a main player in the realm of machine translation
[5]. SYSTRAN during this period began to incor-
porate design aspects of transfer machine trans-
lation systems while retaining much of its tra-
ditional direct translation approach. Their paired
language translations were effective enough to
secure deals with multiple European countries
for systems to translate between Latin based
languages [4].

Despite the numerous advances created over
the years in regards to rule-based machine trans-
lation (RBMT), it still had glaring weaknesses.
RBMT systems needed to be tuned to a specific
area of language, such as engineering or techni-
cal and would usually perform poorly on texts
outside of its area of expertise. Efforts to create
a more generalized approach to RBMT systems
that could handle texts from any genre were often
met with failure. The series of rules needed for
quality translations expanded as the scope of the
system did. Additionally, the problem of non-
transferable work for one language to another
had still not been solved. Transfer systems did
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much to help with this issue, but every pair of
languages required a mostly custom set of transfer
rules. This was both expensive and prone to error,
with every new system requiring a large amount
of overhead. Research was looking into other
alternatives that could potentially be easier to
set up and maintain than the traditional RBMT
systems.

A DEPARTURE FROM RULE-BASED
SYSTEMS

While both the ‘first’ and ‘second’ generation
of machine translation relied on rule-based trans-
lation, translation that algorithmically analyzed
or generated text from a SL to a TL, in the
late 1980s, new approaches were being explored
and rapidly gained in popularity. These include
example based machine translation and statistical
machine translation. It is important to note that
during this period machine translation had been
slowly shifting into amalgamated methods, with
most professional approaches blending a number
of techniques. So while these new systems strayed
from the original core of rule-based translation, it
was not uncommon to use previously developed
methods in combination with newer methods.

Example Based Machine Translation

As early as 1981, a Japanese researcher
Makoto Nagao had been working on an alter-
native method of machine translation. In 1984
Nagao proposed a method for machine translation
based off of the manner that human translators
followed [8]. Instead of trying to create abstract
representations for sentences, human translators
often break a body of text into phrases that
they then translate directly. Then, the rest of
the work relies on developing a translation that
connected the phrases together. Nagao reasoned
that machines could do something similar with a
large set of example translations. Starting from a
text professionally translated into two languages,
the texts could be aligned and broken down into
phrases by utilizing rule-based approaches or sta-
tistical analysis. A database of phrases could then
be generated, with larger corpora creating richer
databases. Once the database was established, a
SL text could be broken down into phrases that
either exactly matched or approximated existing

phrases in the database and the corresponding
translation could be substituted. This method
would eventually come to be known as example
based machine translation.

This methodology took hold in Japan, and
much of the research into machine translation
in Japan during the late 1980s onward focused
on example based machine translation. It had
several advantages over the traditional rule-based
approaches. After decades of research, it was
readily apparent that rule-based systems required
a large amount of investment and experimentation
to develop an appropriate set of grammatical and
linguistic rules. Additionally, each new language
required unique rules, and while generalized ap-
proaches could be applied across the board, much
of the work done on rule-based systems was only
applicable to the specific language pair addressed.
Example based machine translation on the other
hand could be improved independently and the
methods used could be incorporated into an ex-
isting project more readily. Additionally, since
example based machine translation used profes-
sionally translated examples, large SL phrases
that matched with examples in the database would
result in professional quality translations [4].

However, example based machine translation
did have several drawbacks. While it works well
for phrases, connecting phrases together was a
non-trivial problem, and two similar phrases in
the SL could match to two different phrases in
the database, often leading to inconsistency in
how some subjects were discussed. Additionally,
when faced with a phrase vastly different from
anything in the database, example based machine
translation does not perform well and can gener-
ate very poor quality translations.

Statistical machine translation

In the late 1980s, machine translation re-
searchers began to delve into some of the older
ideas of machine translation, going back as far as
its origins. Cryptography is heavily related to ma-
chine translation, with the main difference being
that the ‘source language’ is a unique language.
Methods developed by cryptographers had been
initially considered as early as Weaver’s memo,
but the majority of the work done on machine
translation focused on the advantage translation
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had over cryptography: bilingual resources. How-
ever, a second look at the methods developed for
cryptography yielded results. Al-Kindi, a famous
ninth century Arab mathematician, had described
a method known as frequency analysis. In cryp-
tography it is used to crack character substitution
encodings by looking at the frequency of char-
acters in the encoded message and comparing
it to the frequencies of non-encoded language.
This method is able to break single-character
substitutions without understanding the encoding
method. When applied to machine translation, it
could mean that purely statistical processes could
“decode” language from a SL into a TL. Of
course, the actual method used is significantly
altered from frequency analysis, but the core of
the idea is similar.

In 1989, a group from IBM published the
results of a machine translation system based on
statistical methods instead of rule-based analyses.
While machine translation had used statistical
methods before, they had largely been auxillary.
This newer method had statistical analysis as the
core of the entire translation. The essence of the
method was first to align phrases, word groups,
and individual words of the parallel texts, and
then to calculate the probabilities that any one
word in a sentence of one language corresponds
to a word or words in the translated sentence
with which it is aligned in the other language
(a ‘translation model’). The outputs were then
checked and rearranged according to word-to-
word transition frequencies in the target language,
derived from the corpus of bilingual texts (a
‘language model’) [4]. To the surprise of both
linguists and machine translation researchers, the
results of this statistical method often exactly
matched professionally translated SL text, or of-
fered alternative legitimate translations of SL text
when it did not match exactly.

Statistical machine translation had its fair
share of issues however. Unlike rule based sys-
tems, specific translation errors were nearly im-
possible to fix, as the translation process was
more opaque. Additionally, the creation of appro-
priate corpora could be a prohibitive cost for more
obscure languages, as the corpora needed to be of
professional quality and plentiful.

However, despite these drawbacks and oth-
ers, statistical machine learning soon came to

the forefront as one of the premier methods
of machine translation. Many large corporations,
some with long histories in machine translation,
began developing statistical machine translation
systems. SYSTRAN, which historically had used
a rule-based machine translation system, released
a statistical machine translation service in 2010.
Google Translate was launched in 2006 and uti-
lized statistical machine translation almost ex-
clusively. Microsoft Translator also utilized sta-
tistical methods in its translation service, which
started as early as 2000.

While initially different approaches to cor-
pus based machine translation, statistical machine
translation and example based machine transla-
tion gradually blended together. Statistical ma-
chine translation was seen as the best method
for corpus-based machine translation, but as it
expanded into phrase-based translation it began
drawing more on concepts originally developed
for example based translation. From around 2000
to 2016, much of the research into machine
translation was focused on corpus-based machine
translation, with an emphasis on statistical ma-
chine translation. Most of the large machine trans-
lation corporations either incorporated or exclu-
sively used statistical machine translation until
around 2016.

NEURAL MACHINE TRANSLATION
Building off of the more empirical approach

to machine translation, the idea to use neu-
ral networks for machine translation surfaced in
late 2013. Due to the focus on corpus-based
approaches, large swaths of bilingual training
data were available to train the neural networks.
In the following year, a multitude of papers
were released concerning the idea of neural
machine translation. Additionally, Dzmitry Bah-
danau, KyungHyun Cho, and Yoshua Bengio re-
leased the paper “Neural Machine Translation by
Jointly Learning to Align and Translate” in 2014
[9]. This paper was a turning point in the machine
translation community. From 2015 onward, neural
machine translation research exploded.

The approaches to neural machine translation
are varied. The original proposition for neural
machine translation focused on using neural net-
works as simple encoders and decoders. In the
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original model, the encoder would have as input
a sentence in the source language, and would
encode it into a fixed length vector [9]. This
vector would then be fed into a decoder network
that would generate text in the target language.
This approach had difficulties, and following the
Bahdanau paper, previous ideas from machine
translation were incorporated into the design of
the networks. These ideas pulled from statisti-
cal machine translation, example based machine
translation, and the various rule-based machine
translation methods. This area of research is
still in rapid development, with papers and re-
sults of experiments being published regularly.
With every new advancement in deep learning
and neural network design, machine translation
quickly adapts and implements to accommodate
the change.

Neural machine translation at this point had
demonstrated itself to be a powerful tool, quickly
becoming comparable to and often better than
the statistical machine translation approaches uti-
lized. As a result of this, multiple large cor-
porations with machine translation efforts an-
nounced a transition toward neural machine learn-
ing. This list includes SYSTRAN, Microsoft, and
Google. For example, in 2016 Google officially
switched its main translation service, Google
Translate, from a statistical method employed
in 2007 to a neural network based approach.
While the previous statistical method utilized by
Google translated text into English as an inter-
mediary language, the networks employed for
the Google Neural Machine Translation system
(GNMT) translate directly from the SL to the TL.

CONCLUSION
Machine translation is a field that has existed

virtually since the beginning of the development
of computer science as a discipline. In its early
stages it focused on direct results and largely ig-
nored linguistic interpretation. After the perceived
failure of this approach, researchers shifted focus

to a rule-based system that borrowed concepts
from linguistics. Following this it shifted once
again to result-based methods with statistical and
example based machine translation, and has now
involved the Pandora’s Box that is deep learning
and neural networks. However, while the methods
and approaches have changed radically, and many
groups blend multiple styles together to achieve
greater results, the main goal of machine trans-
lation is unchanged. Machine translation aims to
make the concept of a ‘language barrier’ some-
thing to be considered only in the history books.
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The Emergence of High-Level
Programming Languages
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Brigham Young University

Abstract—Computers use machine code internally, but almost all contemporary computer
programming is carried out in high-level languages based on English-language words. This
paper endeavors to show how compiled or interpreted high-level languages came to be invented,
accepted, and standardized. I begin with the handwritten tables of inputs and outputs for Charles
Babbage’s theoretical Analytical Engine and conclude with the creation of COBOL, FORTRAN,
and ALGOL.

A PROGRAMMING LANGUAGE is a point
between human language and machine code po-
sitioned such that it is a reasonably sized step
from each. For the gap between human language
and programming language, the gap must be
small enough for a large proportion of the human
population to be able to manage the translation,
or in other words, to write code. The smaller
the gap, or the closer the programming language
is to human language, the larger that proportion
can be. For the gap between programming lan-
guage and machine language, the gap must be
small enough that some machine can manage
the translation, though it need not be the same
machine on which the code will run. The smarter
our machines become, the larger that gap can
be. Over time, the size of both gaps has varied,
but the efforts of visionary human beings and
the development of more capable machines has
resulted in the trend of programming languages
becoming more friendly toward human beings.

This paper will examine the evolution of
our communication with computing machines,
including those that are mechanical and elec-
tromechanical. It is organized mostly chronolog-
ically, with separate sections for each program-
ming language. Sections will be named after the
programming language they explore, if it has a

name, or the name of the hardware on which it
is used if it does not. Most sections will include
an example of the programming language.

THE ANALYTICAL ENGINE
In the early nineteenth century, tables of

logarithms and trigonometry were widely used
in calculations relevant to navigation, engineer-
ing, science, and finance. However, the tables
were tedious to create and sometimes inaccurate.
Charles Babbage believed they could be produced
quickly and accurately if done mechanically, and
he designed a “Difference Engine” to do it. In
1823, he convinced the British government to
provide funding for its construction, but the work
was slow. The first prototype was not completed
until 1832. The following year, 17-year-old Ada
Lovelace attended a party at Babbage’s home
with her mother, and they were invited to see
a demonstration of the prototype, which could
raise numbers to second and third powers and
find the root of a quadratic equation. Later that
year, Babbage’s engineer quit, keeping all of the
plans for the Difference Engine, including the
ones drawn by Babbage. [1]

Babbage turned his attention to a better in-
vention, an “Analytical Engine.” It would be
capable of many different operations, which could
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Figure 1. Menabrea’s instructions for solving a system of equations. The first column indicates input data that
will be set on the “columns,” ie. variables, of the Analytical Engine before the program runs. The fourth column
indicates which operation will be run at each step, the fifth column indicates the operand variables, and the
sixth column is the output variables. Columns 4-6 would be input using punched cards. The last two columns
are comments for the reader. Menabrea’s instructions demonstrate the power of storing values in variables and
reusing them. (See row 11, where he uses the same stored values to calculate y as he used for x.)

be done in an arbitrary sequence controlled by
punched cards, after the fashion of the Jacquard
loom. Columns of rotating disks would store dec-
imal numbers which could be used as operands
or results. Though Babbage was unable to get
funding for the Analytical Engine, he was in-
vited to lecture on it in Turin, Italy, in 1840.
Luigi Menabrea, a 30-year-old army engineer
who later became prime minister of Italy, took
notes on the presentation and published a paper
in French. Lovelace, who had remained friends
with Babbage, translated the paper into English,
adding notes of her own that were longer than
the original publication. She included a sequence
of 25 operations which would compute Bernoulli
numbers. Her programming language, in this
case, was a table indicating the operations to be

used and the columns (data registers) they would
act upon. Other columns in the table contained
comments and structural information to help the
reader. The same format was used by Menabrea
in his paper. [1]

Though Ada Lovelace is generally given
credit for being the first programmer, due to
her program for Bernoulli numbers, the fact is
that Menabrea and Babbage created similar lists
of instructions, though not as complicated. The
intent of this paper, however, is to explore the
programming language and not to answer the
question of who deserves the most credit for using
it. Figure 1 shows Menabrea’s program to solve
the system of equations
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Figure 2. Lovelace’s program for calculating Bernoulli numbers. She uses the same format as Menabrea, but
with many columns of explanation for her readers. Note that in line 1, she assigns the value 2n to multiple
variables, and after line 23 she indicates a loop with the text, ”Here follows a repetition of Operations thirteen
to twenty-three.”

mx+ ny = d

m′x+ n′y = d′

or
x =

dn′ − d′n

n′m–nm′

y =
md′ −m′d

mn′ −m′n

Menabrea’s instructions demonstrate the power
of storing values in variables and reusing them.
(See row 11, where he uses the same stored
values to calculate y as he used for x.) Fig-
ure 2 shows Lovelace’s program for calculating
Bernoulli numbers. Note that in line 1, she assigns
the value 2n to multiple variables, and after line
23 she indicates a loop with the text, “Here
follows a repetition of Operations thirteen to
twenty-three.”

Winston Churchill said that, “Plans are of
little importance, but planning is essential.” In the
case of Babbage’s Analytical Engine, we see the
truth of Churchill’s words. Although the planned
Analytical Engine was never built, the activity
of creating algorithms for it allowed Babbage,
Menabrea, and Lovelace the opportunity to ex-
plore ideas relevant to bridging the gap between
human language and machine language. The next
attempt to do so would come a century later.

PLANKALKÜL
In 1938, Konrad Zuse completed the computer

he was building in the living room of his parents’
apartment in Berlin. [2][3][4]. He had quit his job
in airplane construction two years prior in order
to work on his machine, which he dubbed the Ver-
suchsModell 1 (Experimental Model 1) [5] or V1.
After World War II, it was renamed Z1, so as not
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Figure 3. Replica of the Z1 in the German Museum
of Technology in Berlin. [8] “There is a replica of this
Model in the Museum of Traffic and Technology in
Berlin. Back then it didn’t function well, and in that
regard the replica is very reliable – it also doesn’t work
well.” —Konrad Zuse [2][9]

to be confused with the German V-1 flying bomb.
[5] Like the proposed Analytical Engine, the Z1
was mechanical. Zuse’s machine, however, used
Boolean logic and binary floating-point numbers,
the first freely programmable computer to do so.
It did not hold a program in memory, but executed
as it read from a punched tape. A separate tape
reader provided input to the machine. [2] The
Z1 and its construction plans were destroyed by
Allied bombing in December of 1943, along with
its successors, the Z2 [6] and Z3 [7]. The Z4
was transported in February 1945 from Berlin
to Göttingen to prevent it from falling into the
hands of the Soviets. As the war ended, Zuse
again moved the Z4 to a stable in the Alpine
village of Hinterstein. It was later acquired and
refurbished by the Federal Polytechnic Institute
(ETH) in Zurich. [5]

Zuse was self-taught with respect to com-
puters, and he designed his own diagram and
notation system to describe logical circuits, only
discovering the existing propositional calculus
in 1938. In 1939 he wrote of that discovery
and added, “Now I plan creation of ‘Calculus
of plans.’ There are series of concepts needed
to clarify for this.” [10][11] The “Calculus of
plans” Zuse developed was the Plankalkül, the
first high-level programming language designed
for a computer. [10]

Figure 4. Plankalkül code was written with variables
in a vertical format. This code calculates the max of
two eight-bit integers, Z1 and Z2, and stores it in Z3.
The guarded command (a single arrow) acts as an
IF-THEN. The double arrow serves as an assignment
operator. Variables are indicated as vertical lists of
attributes in a prescribed order from top to bottom.
The first attribute is the kind of variable. Each variable
must be V (read-only), Z (read or write), or R (write
only). The variables do not have names; to distinguish
a variable of a given kind from others of that same
kind, they are each given an index, and this index is
the second vertical element. Since every variable is
a combination of bits, the third element is the com-
ponent index, indicating which bit is being referred to.
This position might be left empty if the whole array of
bits is being referred to, as in this example, where an
array of 8 bits is used to express an integer number.
The fourth vertical element indicates how many bits
are included in the variable, its type. [12]

The Plankalkül was fairly sophisticated, con-
sidering that Zuse never actually implemented
it. He did write algorithms in it, and obviously
recognized the need for structural components
such as loops, conditionals, and subroutines. It
included a WHILE loop, which had a special
form that functioned as a FOR loop, and “guarded
commands” that function like an IF-THEN. Pro-
grams were numbered functions, which could be
invoked with call-by-value variables. Variables
could be of type bit, array of bits, or tuple.
Types did not need to be declared, because each
reference to the variable included its type. [12]

In Zuse’s syntax for Plankalkül, variables are
written in a vertical format (See Figure 4), which
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Figure 5. For loop structure in Superplan [14]

makes it difficult to reproduce in printed text.
Since Zuse never implemented Plankalkül, he
did not have to resolve how he would input the
code. When Plankalkül was first implemented in
1975, a horizontal format was used for variable
names. [10] Like the language of the Analytical
Engine, Plankalkül served as a framework for
thinking about what a programming language
needs for functionality and for practical use by
human beings.

SUPERPLAN
When Zuse’s Z4 was acquired by the ETH

in Zurich, one of its early users was Heinz
Rutishauser. Rutishauser and his colleague, Am-
bros Speiser, were employed to study the math-
ematical implications of computers at the newly
formed Institute for Applied Mathematics at ETH.
They were assigned to learn the state of the art
in computing and establish a computing program.
They spent all of 1949 visiting first Howard
Aiken at Harvard and then John von Neumann at
Princeton, as well as other installations. However,
when they returned in December of that year, they
discovered that ETH had obtained Konrad Zuse’s
Z4. [13] Influenced by Plankalkül, Rutishauser
developed Superplan, which introduced the key
word “for” (“für” in German) for a loop over an
array with an iterator included in the definition of
the loop.

ENIAC CABLES
On the other side of the Atlantic, the Moore

School of Electrical Engineering, a part of the
University of Pennsylvania, was grappling with
the difficulty of calculating artillery firing tables
for large numbers of guns that the U.S. Army was
developing for the war effort. Lieutenant Herman

H. Goldstine, the liaison between the United
States Army and Moore School, stated, “Such
a trajectory involved about 750 multiplications
and would take a human at least seven hours.”
[16] John Mauchly, the head (and only staff
member) of the physics department at Ursinus
College, came to the Moore School for the De-
fense Training Course for Electronics and stayed
to accept a teaching position. His lab instructor
during the course was J. Presper Eckert [17], who
convinced him that vacuum tubes, which were
notoriously unreliable, could be employed with
good engineering practices to build a purely elec-
tronic computer. Mauchly wrote a memo propos-
ing it, “The Use of High-Speed Vacuum Tube
Devices For Calculating,” in which he argued
that “the result of one calculation, such as a
single multiplication, is immediately available for
further operation in any way which is dictated by
the equations governing the problem, and these
numbers can be transferred from one component
to another as required, without the necessity of
copying them manually onto paper or from one
component to another, as is the case when step
by step solutions are performed with ordinary
calculating machines.” [18]

Mauchly’s memo was brought to Goldstine’s
attention, and Goldstine invited him to write a
formal proposal, resulting in a contract, in April
1943, for the Moore School to construct the
Electronic Numerical Integrator and Computer
(ENIAC). Capable of adding 5,000 numbers in
a second, the ENIAC was a technological won-
der, allowing for the solution of problems that
were previously unsolvable. Before its construc-
tion was finished, however, Mauchly and Eckert
were already planning its successor, the EDVAC,
which would be capable of storing programs. It
happened that Goldstine met John von Neumann
by chance on a railway platform in the summer
of 1944 and began to tell him about the ENIAC
project. Apparently, von Neumann’s interest was
piqued, causing Goldstine to report that “the
whole atmosphere of our conversation changed
from one of relaxed good humour to one more
like the oral examination for the doctor’s degree
in mathematics.” [19] Von Neumann joined the
team and described the EDVAC in 1945 in a
paper entitled “First Draft of a Report on the
EDVAC.” (Eckert and Mauchly left the Moore

December 2020 191



The Emergence of High-Level Programming Languages

Figure 6. ENIAC (Electronic Numerical Integrator and Computer) in Philadelphia, Pennsylvania. [15] Glen Beck
(background) and Betty Snyder (foreground). The ENIAC was programmed by moving its cables.

School around this time, due at least in part to
a change in the school’s policy regarding intel-
lectual property, and the paper was distributed
without referencing them. [20])

Somewhat ironically, the programming of
computers was initially considered merely a task
to be done, rather than an academic pursuit, and
the work of programming the ENIAC was given
to six women, the ENIAC six. They had no
programming language, nor even an instruction
manual. They programmed the ENIAC by moving
its cables around, “often with only the circuit
schematics to go by.” [21] Thus, the programming
language for the ENIAC was, essentially, cables.

MARK 1
Meanwhile, another woman was part of the

programming team for the Mark I, the only other

computer in existence. [21] Dr. Grace Hopper had
received her PhD from Yale in 1934 and taught
mathematics at Vassar [22] until she took a leave
of absence to join the Navy Reserves in Decem-
ber of 1943, assuming she would be assigned to a
team focused on code breaking. [21] Instead, she
was assigned to the Bureau of Ordnance Compu-
tation Project at Harvard [22], where she began
programming the Mark I, an electromechanical
computer programmed with punch cards. [21]
Though she worked strictly in machine language,
Hopper was already beginning to formulate ideas
about efficient use of subroutines. In her own
words: “Any problem we solved, we found we did
not need complete generality; we always knew
something about what we were doing – that was
what the problem was. And the answer was –
we started writing subroutines, only we thought
they were pieces of coding. And if I needed a
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Figure 7. This Short Code example calculates the
sum of all numbers from S0 to S2 with an increment
of S1.[24]

sine subroutine, angle less than pi/4, I’d whistle at
Dick and say, ‘Can I have your sine subroutine?’
and I’d copy it out of his notebook. We soon
found that we needed just a generalized format
of these if we were going to copy them.” [22]

OCTAL on the BINAC
In 1947 Eckert and Mauchly formed the first

computer company, the Eckert-Mauchly Com-
puter Corporation (EMCC), where they continued
their work on the EDVAC with the BINAC and
then the UNIVAC, the first large-scale commer-
cially available computer. [20] Hopper, who was
mustered out of the Navy after the war due
to her age (40), [23] joined EMCC in 1949.
She describes her first experience there: “They
were building BINAC, a binary computer. We
programmed it in octal. Thinking I was still a
mathematician, I taught myself to add, subtract,
and multiply, and even divide in octal. I was
really good, until the end of the month, and then
my checkbook did not balance! It stayed out of
balance for three months until I got hold of my
brother who’s a banker. After several evenings
of work he informed me that at intervals I had
subtracted in octal. And I faced the major problem
of living in two different worlds. That may have
been one of the things that sent me to get rid of
octal as far as possible.” [22]

UNIVAC SHORT CODE
Mauchly quickly realized that if customers

were going to buy computers, they would need
software (though the word “software” was not

yet in use), and he designed “Brief Code”, which
came to be called Univac Short Code, for the
BINAC, making it the first programming lan-
guage actually used on a computer. [20] Short
Code was an interpreted language, which ran
about 50 times slower than machine code. [25]
It allowed for branching and calls to a library
of functions. It was implemented by a summer
intern, William Schmitt, who reported to Grace
Hopper. Of Short Code, Hopper wrote, “I think
this was the first thing that clued me to the fact
that you could use some kind of a code other
than the actual machine code. . . To us it was a
pseudo-code.” [22]

Betty Holberton of the ENIAC six was an-
other EMCC employee. [26] In 1951, Holberton
wrote a “Sort-Merge Generator” for the Univac 1.
Its output was machine code, and, perhaps due to
her musings regarding reusable code, Hopper was
quick to recognize the significance of it. “You fed
it the specifications of the files you were operating
on, and the Sort-Merge Generator produced the
program to do all of the input and output in
the various tape units. . . It meant that I could do
these things automatically; that you could make
a computer write a program.” (emphasis added)
[22] In spite of frequent objections from the
“Establishment” that a computer could not write
a program, Hopper insisted that “I could make a
computer do anything which I could completely
define,” and witnessed the creation of “a whole
family of other generators.” So far, though, she
had not convinced anyone else of their import.
[22]

The A-0 COMPILER
In October, 1951, Hopper received an assign-

ment to build a set of mathematical subroutines
for the UNIVAC 1, standardized for general use.
“As I went along in the process of standard-
izing the subroutines, I recognized something
else was happening in the programming group.
We were using subroutines. We were copying
routines from one program into another. There
were two things wrong with that technique: one
was that the subroutines were all started at line 0
and went on sequentially from there. When you
copied them into another program, you therefore
had to add to all those addresses as you copied
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Figure 8. Grace Hopper [27]

them into the new program – you had to add to
all those addresses. And programmers are lousy
adders! The second thing that inhibited this was
that programmers are lousy copyists! And it was
amazing how many times a 4 would turn into
a delta which was our space symbol, or into an
A - and even Bs turned into 13s. All sorts of
interesting things happened when programmers
tried to copy subroutines. And there of course
stood a gadget whose whole purpose was to
copy things accurately and do addition. And it
therefore seemed sensible, instead of having the
programmers copy the subroutines, to have the
computer copy the subroutines. Out of that came
the A-0 compiler.” [22]

Though Hopper’s account is worth reading for
both enlightenment and entertainment, a summary
must suffice here to explain a few of the signif-
icant elements of her A-0 compiler, the first of
its kind. Emphasis was on allowing programmers

to create executable programs quickly, rather than
optimizing the machine code that was produced.
In addition, it was important for the machine to
be accessible to more and more people, including
some who did not want to “learn octal code and
manipulate bits.” It did not occur to Hopper to
make two passes in order to link with subroutines
that had not been encountered yet. Instead, she
created a “neutral corner” of memory in which
she kept track of places where forward references
were needed, a concept she says was inspired
by making forward passes in basketball, which
she played as an undergraduate at college. She
documented all of her work on the compiler
extensively, knowing that nobody would believe it
was going to work. The idea of a machine writing
machine code was still too outrageous for other
members of the computing community to wrap
their minds around it. [22] For several years in
the mid 1950’s, Hopper worked tirelessly to con-
vince the computing community of the value of
programming languages, compilers, subroutines,
and a focus on software development in general.
[23]

Justice requires an acknowledgement, at this
point, of the independent efforts of Alick Glen-
nie, who developed a programming language and
compiler, known simply as “Autocode,” for the
Mark 1 computer at the University of Manchester
in 1952. This is considered by some to be the first
compiler. [28] There is much less information
available about Autocode or Glennie than Hopper
and her work. This is evidence, I believe, that
Hopper’s vision of software as a discipline and
her persevering effort to convey this vision to the
world at large was an even greater contribution
than actually writing a compiler.

The compiler, though, was of enormous im-
pact. The A-0, which focused on mathematical
programming, was succeeded by the A-2, A-3,
and AT-3 compilers. These last were eventually
renamed ARITH-MATIC and MATH-MATIC by
the marketing department of Remington Rand
UNIVAC. [23][22]

The B-0 COMPILER (UNIVAC
FLOW-MATIC)

In the meantime, Hopper had been thinking
about a compiler for data processing. She had
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Figure 9. FLOW-MATIC Code [29]

found that the people who worked in data pro-
cessing were “business trained,” rather than math-
ematically trained; “they were word-manipulators
rather than mathematics people.” Another obser-
vation she made was that whereas mathematics
and engineering had a well-defined language,
there was no such language for data processing.
“We took something over 500 data processing
programs and sat down to write out what people
were doing when they did data processing. We
finally identified about 30 verbs which seemed to
be the operators of data processing.” [22]

In a report in 1953, Hopper proposed to
management that her team write two separate

compilers, a symbolic one for mathematics, the
A-0, and a data processing compiler to translate
English-based code. She was told she could not
do that, because computers could not understand
English words. Hopper and her team, however,
understood the nature of symbolic representation,
which could extend to English-based words as
well as to mathematical symbols, and in Jan-
uary 1955 they submitted the formal proposal
for the B-0 compiler for data processing. The
language was to be variable-length English words
separated by spaces. They built a pilot model
to prove the concept, choosing English words
in which the first and third letter combinations
were unique among possible key words, in order
to make parsing easy. On the back of the report
to management, they printed an English-language
based program (below) that would run in the new
compiler. To further prove the concept, they made
it work with French words or German words in-
stead, but this so alarmed the management that the
team dropped all references to foreign languages.
B-0 was eventually accepted and renamed FLOW-
MATIC to match the company’s other compiler
products.

This is the note to management and the ex-
ample of English-based code that Hopper’s team
included on the back of their report on the B-0
compiler: “Dear Kind Management: If you come
down to the machine room, we’ll be delighted to
run this program for you. INPUT INVENTORY
FILE A; PRICE FILE B; OUTPUT PRICED
INVENTORY FILE C. COMPARE PRODUCT
#A WITH PRODUCT #B. IF GREATER, GO TO
OPERATION 10; IF EQUAL, GO TO OPERA-
TION 5; OTHERWISE GO TO OPERATION 2.
TRANSFER A TO D; WRITE ITEM D; JUMP
TO OPERATION 8; REWIND B; CLOSE OUT
FILE C AND D; STOP”

COBOL
The development of COBOL (Common

Business-Oriented Language) was undertaken by
the Department of Defense, with a goal of cre-
ating a standard data-processing language that
would not need to be re-written to run on a
different computer. [30] A committee (the Short
Range Committee, later renamed the COBOL
committee) of nine members was tasked with
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defining the specifications of the language. Jean
Sammet, one of the nine committee members, re-
ports that, “eventually over 25 people participated
in some phase of the basic COBOL language
design; this large group included two people who
worked for Grace, but Grace herself was not a
member of the committee that defined COBOL.
. . . Thus while her indirect influence was very im-
portant, regrettably the frequently repeated state-
ments that ‘Grace Hopper developed COBOL’ . . .
are just not correct. Grace’s primary contribution
to COBOL was indirect, and via FLOW-MATIC.
It was the only business-oriented programming
language in use at the time the COBOL de-
velopment started (aside from AIMACO which
was a dialect of FLOW-MATIC). Without that
existing practical use of FLOW-MATIC I doubt
that we would have had the courage to develop a
language such as COBOL. (The other significant
input to the early COBOL work was Commer-
cial Translator which was a set of specifications
from IBM but it had not yet been implemented.)
Thus, in my view, without FLOW-MATIC we
probably never would have had a COBOL. The
practical experience of implementing and using
that type of language was priceless.” [23] The
first version of COBOL was COBOL 60, and
“the U.S. government declared that any computer
manufacturer wishing to do business with the
government had to offer COBOL, unless it could
show it has a better-performing language.” [31]
Compilers for the new language were created by
hardware manufacturers.

SPEEDCODING AND FORTRAN

Around the same time that Hopper proposed
her two compilers (1953), John Backus, a math-
ematician working for IBM, was performing a
similar task. Backus had created Speedcoding,
the first high-level programming language for an
IBM, earlier that year, to support computation
with floating point numbers. It was an interpreted
language, which substantially reduced the time it
took to create programs, but took more than ten
times as long to run them. The program itself
took up about 30% of the memory available on
the IBM 701 for which it was designed. Late
in 1953, Backus proposed that IBM develop a
practical alternative to assembly language for the

Figure 10. A deck of punched cards comprising
a computer program. The deck was created circa
1969. Individual subroutines are marked in red on
the sides of the cards, and the markings show the
effects of editing, as cards are added, replaced or
reordered.[32]

IBM 704 mainframe. [33] Backus’s boss quickly
agreed [22] and his team had created a draft
specification for The IBM Mathematical Formula
Translating System by November of the following
year. The first FORTRAN compiler was delivered
in 1957. [33] Unlike Speedcoding, FORTRAN
was designed to generate code with “performance
approaching that of hand-coded assembly lan-
guage.” [33] Of this need for efficiency, Backus
said, “Most of the early systems we’ve seen, and
many others, had hidden a lot of gross inefficien-
cies by virtue of the fact that most computing
time was being spent in floating point subroutines.
Because of that you could get away with a lot
of clumsy treatment of looping and indexing,
and references to arrays that escaped unnoticed
because of all the time that was chewed up
by floating point subroutines. But now we were
confronted with the 704 which, for the first time,
had built-in floating point and indexing, and we
knew that this would make our goal of producing
efficient object code very difficult because there
was nowhere to hide inefficiencies. You couldn’t
do clumsy calculations of subscript combinations
and get away with it in that machine.” [22]

FORTRAN was an instant hit with scientists,
who appreciated its ease of use, efficiency, and
transportability across hardware platforms. FOR-
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TRAN II was released the following year (1958),
introducing subprograms with shared data space.
FORTRAN IV, released in 1962, contained type
statements, the logical-if statement, and proce-
dure names passed as arguments. [33]

ALGOL
Not content with the definition of two pro-

gramming languages, Backus traveled to the ETH
in Zurich for an international conference, also
attended by Rutishauer, to discuss a universal
algorithmic language, which they dubbed AL-
GOL. ALGOL was an abstract representation for
defining the standards of a language, but was
also implemented specifically as ALGOL-58, and
then ALGOL 60, [22] which became the standard
language for the publication of algorithms.

CONCLUSION
The formative period of computer program-

ming languages lasted until the late 1950’s. Emer-
gent ideas during this time period included in-
terpreted languages, compiled languages, spoken-
language based programming languages, platform
independence, efficiency of programmer time,
efficiency of machine code, and foundational
structural elements of a programming language,
such as variable types, while loops, for loops,
conditional statements, branching of control flow,
and generalized subroutines.

The Development of COBOL, FORTRAN,
and ALGOL marks an important paradigm shift
in the design of programming languages and the
development of software. Previous work had been
done by individuals and small teams, possessing
the vision of programming languages and per-
severing in an environment of skepticism and
outright disbelief, creating languages geared to-
ward specific hardware. By 1960, however, the
concept of high-level programming languages
had gained general acceptance, English-language
symbols had been proven feasible, and the com-
puting community was beginning to establish
standards for programming languages. The fol-
lowing two decades saw an explosion of new
languages and paradigms. Most of these inherited
directly from one or more of these three monu-
mental achievements. All of them grew out of the
vision, creativity, and effort of the mathematicians

who dared to believe that human beings could
speak to machines in our own language.

Further research on this topic would be helpful
to understand the explosion of languages and
paradigms during the 1970’s and 1980’s, and the
further development and refinement of languages
and concepts through to the present. A focus on
the hardware technologies that accompanied each
step in the evolution of programming languages
would also be illuminating.
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